Production and identification of rare-earth doped lithium triborate

2006-07-20
Research in the field of non-linear optical (NLO) devices lead to an increasing interest in new borate compounds, capable of expanding the frequency range provided by common laser sources. Lithium triborate (LBO) is a newly developed ideal non-linear optical crystal used in laser weapon, welder, radar, tracker, surgery, communication, etc. In this study, synthesis and identification of rare-earth doped lithium triborate was carried out. Borates containing rare-earth elements are of great interest since they are found to be superior in non-linear optical applications. Lithium triborate was produced from the solid-state reaction. Lithium triborate was then doped with some rare-earth elements (Gd, La, Y, etc.) in several different concentrations. In this study, LBO samples doped with Gd are presented. Characterization of the new products was done by X-ray diffraction (XRD) and infrared (IR) analysis. Differential thermal analysis (DTA) was used for examination of the thermal properties of the compounds, morphology of new compounds was observed by scanning electron microscopy (SEM). The compounds are then subjected to thermoluminescence (TL) studies. From the XRD, studies, no change related to addition of the rare-earth elements was observed. IR analysis showed that there is no change related to B-O link with the addition of rare-earth elements. DTA studies showed that the melting point of LBO decreases with the addition of rare-earth elements. In the SEM images, particles of rare-earth elements and lithium triborate were observed clearly.
JOURNAL OF ALLOYS AND COMPOUNDS

Suggestions

Synthesis of rare-earth doped lithium triborate
Ardıçoğlu, Burcu; Özbayoğlu, Gülhan; Department of Mining Engineering (2005)
Research in the field of non-linear optical (NLO) devices lead to an increasing interest in new borate compounds, capable of expanding the frequency range provided by common laser sources. Lithium triborate (LBO) is a newly developed ideal non-linear optical crystal used in laser weapon, welder, radar, tracker, surgery, communication, etc. Borates containing rare-earth elements are of great interest since they are found to be superior in non-linear optical applications. In this study, synthesis and identifi...
Design and analysis of ultrashort femtosecond laser amplifiers
Doğan, Ersin; Bilikmen, Kadri Sinan; Department of Physics (2006)
This thesis presents a compact femtosecond laser amplifier design for optical preamplifiers and power amplifiers consist of theoretical perspective, simulations to analyze and optimize beam performance. The propagation through optical media is simulated for every optical component such as mirrors and nonlinear crystal separately and suggested realignment of these components required increasing amplifier performance. Finally Gaussian beam propagation and aberration compensation has been conducted.
Synthesis and thermoluminescence properties of rare earth oxides (Y, Ce-Lu) doped lithium triborate
Yılmaz, Ayşen; Yılmaz, Ayşen (2011-06-01)
Lithium triborate (LiB(3)O(5)) was synthesized by high temperature solid-state reaction method, and then rare earth oxides were doped into LiB(3)O(5) to enhance its thermoluminescent (TL) properties. The identification and characteristics of the obtained compounds were determined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) analyses, differential thermal analyses (DTA) and scanning electron microscopy (SEM). The glow curves were obtained using a thermoluminescent (TL) reader. The results re...
Demonstration and performance assessment of large format InP-InGaAsP quantum-well infrared photodetector focal plane array
Ozer, S.; Tümkaya, Umman; Asici, B.; Beşikci, Cengiz (Institute of Electrical and Electronics Engineers (IEEE), 2007-07-01)
There have been various studies showing that InP-InGaAs quantum-well infrared photodetectors (QWIPs) are potential alternatives to AlGaAs-GaAs QWIPs in the long wavelength infrared (LWIR) band, especially for applications requiring high responsivity. Being on InP substrate, this material system also offers lattice matched mid-wavelength infrared (MWIR)/LWIR dual band QWIP stack when it is used with the AlInAs-InGaAs system. It is desirable to extend the cut-off wavelength of Inp based LWIR QWIPs to similar ...
Assessment of large format InP/InGaAs quantum well infrared photodetector focal plane array
Ozer, S; Cellek, OO; Beşikci, Cengiz (Elsevier BV, 2005-10-01)
We report the fabrication and characteristics of large format (640 x 512) InP/In0.53Ga0.47As long wavelength infrared (LWIR) quantum well infrared photodetector (QWIP) focal plane array (FPA). The FPA, which is hybridized to a read-out integrated circuit having a charge capacity of 1.1 x 10(7) electrons, yielded a mean noise equivalent temperature difference (NETD) of similar to 40 mK at a cold finger temperature as high as 77 K. The performance of the FPA, being comparable to that of AlGaAs/GaAs QWIP FPAs,...
Citation Formats
A. Yılmaz, Z. Ozdemir, and A. Yılmaz, “Production and identification of rare-earth doped lithium triborate,” JOURNAL OF ALLOYS AND COMPOUNDS, pp. 77–79, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31498.