Production and identification of rare-earth doped lithium triborate

2006-07-20
Research in the field of non-linear optical (NLO) devices lead to an increasing interest in new borate compounds, capable of expanding the frequency range provided by common laser sources. Lithium triborate (LBO) is a newly developed ideal non-linear optical crystal used in laser weapon, welder, radar, tracker, surgery, communication, etc. In this study, synthesis and identification of rare-earth doped lithium triborate was carried out. Borates containing rare-earth elements are of great interest since they are found to be superior in non-linear optical applications. Lithium triborate was produced from the solid-state reaction. Lithium triborate was then doped with some rare-earth elements (Gd, La, Y, etc.) in several different concentrations. In this study, LBO samples doped with Gd are presented. Characterization of the new products was done by X-ray diffraction (XRD) and infrared (IR) analysis. Differential thermal analysis (DTA) was used for examination of the thermal properties of the compounds, morphology of new compounds was observed by scanning electron microscopy (SEM). The compounds are then subjected to thermoluminescence (TL) studies. From the XRD, studies, no change related to addition of the rare-earth elements was observed. IR analysis showed that there is no change related to B-O link with the addition of rare-earth elements. DTA studies showed that the melting point of LBO decreases with the addition of rare-earth elements. In the SEM images, particles of rare-earth elements and lithium triborate were observed clearly.
JOURNAL OF ALLOYS AND COMPOUNDS

Suggestions

Synthesis of rare-earth doped lithium triborate
Ardıçoğlu, Burcu; Özbayoğlu, Gülhan; Department of Mining Engineering (2005)
Research in the field of non-linear optical (NLO) devices lead to an increasing interest in new borate compounds, capable of expanding the frequency range provided by common laser sources. Lithium triborate (LBO) is a newly developed ideal non-linear optical crystal used in laser weapon, welder, radar, tracker, surgery, communication, etc. Borates containing rare-earth elements are of great interest since they are found to be superior in non-linear optical applications. In this study, synthesis and identifi...
Design and Optimization of Nanoantennas for Nano-Optical Applications
Işıklar, Göktuğ; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2020-9)
In this study, design and simulation of plasmonic nanoantenna structures to obtain high power enhancement capabilities at optical frequencies, as well as utilization of nanoantennas for imaging and sensing applications are presented. Plasmonic characteristics of nanoantennas, which depend on many parameters, such as material, frequency, geometry, and size, are investigated in detail via computational analyses of various nanoantenna structures. Numerical solutions of electromagnetic problems are performe...
A new boundary element method formulation for the forward problem solution of electro-magnetic source imaging
Tanzer, IO; Gençer, Nevzat Güneri (1997-11-02)
Numerical solution of the potential and magnetic fields far a given electrical source distribution in the human brain is the essential part of electro-magnetic source imaging. In this study, the performance of Boundary Element Method (BEM) with different surface element types is explored. A new BEM formulation is derived that makes use of isoparametric linear and quadratic elements. It is shown that, quadratic elements provides superior performance over linear elements in terms of computation time and accur...
Synthesis and luminescence properties of tetraphenylethene-based small molecules used in organic light emitting diodes
Odabaş, Serhat; Tanyeli, Cihangir; Department of Chemistry (2014)
Organic light emitting diodes (OLED) is an exciting new technology that attracted much attention to scientist for emissive technology. The basic OLED structure consists of a stack of fluorescent organic layers sandwiched between a transparent conducting anode and metallic cathode. The important problems in luminescence is that, molecules aggregate in solid state that leads formation of excimers which results in emission quenching so that most of the luminescent materials show weak emissions in their solid f...
Design and fabrication of strained light emitting germanium microstructures by liquid phase epitaxy
Ünlü, Buse; Yerci, Selçuk; Boztuğ Yerci, Çiçek; Department of Micro and Nanotechnology (2021-9)
Germanium is compatible with CMOS technology and can be utilized for the development of an integrated laser on Si platforms. Nevertheless, it is a very inefficient light emitter owning to its indirect bandgap. On the other hand, the application of tensile strain reduces the split in between direct and indirect band edges of Ge, which in turn enhances its light emission efficiency, and converts it into a direct bandgap material. In this thesis, firstly finite element model simulations are performed to determ...
Citation Formats
A. Yılmaz, Z. Ozdemir, and A. Yılmaz, “Production and identification of rare-earth doped lithium triborate,” JOURNAL OF ALLOYS AND COMPOUNDS, pp. 77–79, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31498.