Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Gas phase reaction kinetics in boron fibre production
Date
2012-05-01
Author
Firat, Fatih
Sezgi, Naime Aslı
Ozbelge, Hilmi O.
Doğu, Timur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
188
views
0
downloads
Cite This
In the production of boron fibres using the chemical vapor deposition (CVD) technique, boron deposition and dichloroborane formation reactions occurs simultaneously. Boron deposition reaction occurs at the surface, whereas the formation of dichloroborane is the result of both gas phase and surface reactions. A continuous stirred tank reactor (CSTR) type of reactor was designed to investigate the reaction kinetics and kinetic parameters in the gas phase reactions of boron trichloride and hydrogen. It was concluded that reaction rate of the product increased with an increase in the inlet concentration of both reactants (BCl3 and H2) and with an increase in the reactor temperature. While reaction order with respect to BCl3 was almost constant at about 0.5 at each temperature, reaction order with respect to hydrogen increased significantly at temperatures lower than 350 degrees C. A general rate expression was derived for BHCl2 formation from BCl3 and hydrogen. (c) 2011 American Institute of Chemical Engineers AIChE J, 2012
Subject Keywords
Kinetics
,
Gas phase reaction
,
Dichloroborane
,
CVD
,
Boron fibres
URI
https://hdl.handle.net/11511/31537
Journal
AICHE JOURNAL
DOI
https://doi.org/10.1002/aic.12671
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
CVD of boron and dichloroborane formation in a hot-wire fiber growth reactor
Sezgi, Naime Aslı; Dogu, T; Ozbelge, HO (2001-11-01)
Chemical vapor deposition (CVD) of boron by hydrogen reduction of BCl, on a hot tungsten substrate was investigated in a parallel flow reactor. Effect of substrate temperature (1100-1250 degreesC) on the relative rates of formation of BHCl2 and boron was observed by the on-line analysis of the reactor effluent stream composition using an FT-IR spectrophotometer. It was concluded that BHCl2 was majorly formed in the gas phase within the thermal boundary layer adjacent to the substrate with possible contribut...
Gas phase reaction of boron fiber productıon
Fırat, Fatih; Özbelge, H. Önder; Department of Chemical Engineering (2004)
In the production of boron fibers using CVD technique, boron deposition and dichloroborane formation reactions take place in a reactor. Boron deposition reaction occurs at the surface while formation of dichloroborane is the result of both gas phase and surface reactions. A CSTR type of reactor was designed and constructed from stainless steel to investigate the gas phase reaction kinetics and kinetic parameters of boron fibers produced from the reaction of boron trichloride and hydrogen gases in a CVD reac...
Mechanism Studies on CVD of Boron Carbide from a Gas Mixture of BCl3, CH4, and H-2 in a Dual Impinging-jet Reactor
Karaman, Mustafa; Sezgi, Naime Aslı; Doğu, Timur; Ozbelge, Hilmi Onder (2009-03-01)
Nearly pure boron carbide free from impurities was produced on a tungsten substrate in a dual impinging-jet chemical vapor deposition reactor from a BCl3, CH4, and H-2 mixture. The Fourier Tran form Infrared (FTIR) analysis proved the formation Of reaction intermediate BHCl2, which is proposed to occur mainly in the gaseous boundary layer next to the substrate surface. Among a large number of reaction mechanisms proposed only the ones considering the molecular adsorption of boron carbide on the substrate su...
Kinetic investigation of chemical vapor deposition of B4C on tungsten substrate
Karaman, Mustafa; Sezgi, Naime Aslı; Doğu, Timur; Ozbelge, H. Onder (2006-12-01)
Production of beta-rhombohedral boron carbide (B4C) on a tungsten substrate by the chemical vapor deposition from a BCl3-H-2-CH4 gas mixture was achieved. An impinging-jet reactor was used to minimize the mass-transfer limitations on the reaction kinetics, which made a detailed kinetic investigation possible. Results of the XRD and XPS analyses showed that the solid product formed on the substrate is a rhombohedral B4C phase. Both dichloroborane and boron carbide formation rates were found to increase with ...
Production of boron nitride by carbothermic and mechanochemical methods, and nanotube formation
Camurlu, HE; Aydogdu, A; Topkaya, Yavuz Ali; Sevinc, N (2003-09-12)
The formation of hexagonal boron nitride by carbothermic reduction of boron oxide and nitridation has been examined. Experiments were conducted in the temperature range of 1100-1500degreesC for durations between 15-240 minutes. Products were examined by X-ray, SEM and chemical analysis. The results showed that the reaction proceeds through a gaseous boron containing species, which is most probably 13203(g). It was found that all of the carbon was consumed and formation of boron nitride was complete in 2 hou...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Firat, N. A. Sezgi, H. O. Ozbelge, and T. Doğu, “Gas phase reaction kinetics in boron fibre production,”
AICHE JOURNAL
, pp. 1562–1569, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31537.