Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Highly efficient Multi-Junction Solar Cells Performance Improvement for AC Induction Motor Control Using the dsPIC30F Microcontroller
Date
2019-01-01
Author
Dida, Abdelkader Hadj
Bourahla, Mohamed
Ertan, Hulusi Bülent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
210
views
0
downloads
Cite This
Solar energy is an abundant renewable source which is expected to play an increasing role in terrestrial and space systems future infrastructure for distributed power generation. Improving of solar performance and efficiency is a key goal of research and the prominent factor in photovoltaic systems which make PV technologies cost-competitive with conventional sources of energy. Multi-junction solar cells are the most efficient technology for generation of electricity from solar irradiation. It's estimated that these cells have an incredible efficiency for more than 40%. They have the advantage of improved performance. Highly efficient multi-junction solar cells find their use in many applications. In regard to terrestrial industrial applications, AC electrics motors are being fed from the multi-junction photovoltaic systems when exposed to high light concentrations using a boost converter and three phase inverter for variable speed AC induction motor drives based on full digital control. Another application for multi-junction solar cells is the use in space vehicles and satellites under low light concentrations. The aim of this research work was modeled and simulated the multi-junction solar cells to improve their performance in terms of efficiency for further exploration in future photovoltaic power generation systems and implemented a variable speed control of an AC Induction Motor using the dsPIC30F Microcontroller for high performance industrial applications.
Subject Keywords
Solar energy
,
Performance improvement
,
Generation of electricity
,
Multi-junction Solar cells
,
Three phase inverter
,
variable speed control
,
Induction motor
URI
https://hdl.handle.net/11511/31711
DOI
https://doi.org/10.1109/acemp-optim44294.2019.9007159
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
New generation metamaterial for energy harvesting
Üstünsoy, Mehmet Paşa; Sabah, Cumali; Sustainable Environment and Energy Systems (2017-8)
Scientists and researchers have been working for many years to find alternative energy sources for gathering the energy demand in which solar energy is a kind of renewable energy source. The proposed structures can be used in several applications such as antennas, EM filters, sensors, THz imaging systems, infrared spectroscopy, infrared cameras, solar cells, and so on. The aim of this thesis is to design and analyze new metamaterial absorbers and energy harvesters with different materials. In addition to th...
Wide-band perfect metamaterial absorber for solar cells applications
Rufangura, Patrick; Sabah, Cumali; Sustainable Environment and Energy Systems (2015-8)
Global adoption of solar photovoltaic (PV) cells as a sustainable substitute to fossil fuel technologies has been impeded by its low efficiency. Generally, efficiency of these devices strongly depends on their ability to absorb radiations of electromagnetic waves incident on them. Their low absorptivity provides a challenge. Metamaterials (MTM) based solar cells offer an opportunity for increasing the system efficiency by enhancing the total absorbed solar radiation incident on solar PV cells. In this thesi...
Analytical Modelling, Simulation and Comparative Study of Multi-Junction Solar Cells Efficiency
Hadjdida, Abdelkader; Bourahla, Mohamed; Ertan, Hulusi Bülent; Bekhti, Mohamed (2018-12-01)
Currently, solar energy is promising the primary source of renewable energy that has a great potential to generate power for an extremely low operating cost when compared to already existing power generation technologies. Increasing the efficiency of solar cells is a major goal and the prominent factor in photovoltaic system research. Current triple junction solar cells reach 30% and the next generation will bring 35% in 5 years to peak at 40%. These cells are used in space environment and in terrestrial sy...
Production of amorphous silicon / p-type crystalline silicon heterojunction solar cells by sputtering and PECVD methods
Eygi, Zeynep Deniz; Turan, Raşit; Erçelebi, Ayşe Çiğdem; Department of Physics (2011)
Silicon heterojunction solar cells, a-Si:H/c-Si, are promising technology for future photovoltaic systems. An a-Si:H/c-Si heterojunction solar cell combines the advantages of single crystalline silicon photovoltaic with thin-film technologies. This thesis reports a detailed survey of heterojunction silicon solar cells with p-type wafer fabricated by magnetron sputtering and Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques at low processing temperature. In the first part of this study, magnetron ...
Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator
BAĞMANCI, MEHMET; KARAASLAN, MUHARREM; ÜNAL, EMİN; AKGÖL, OĞUZHAN; Sabah, Cumali (2017-07-01)
A new metamaterial absorber (MA) is investigated and shown numerically for solar energy harvesting for future solar cell applications. The structure consists of two metals and one dielectric layer having different thicknesses. Owing to this combination, the structure exhibits plasmonic resonance characteristics. In the entire spectrum of visible frequency region, the obtained results show that investigated structure has perfect absorptivity which is above 91.8%. Proposed structure also has 99.87% absorption...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. H. Dida, M. Bourahla, and H. B. Ertan, “Highly efficient Multi-Junction Solar Cells Performance Improvement for AC Induction Motor Control Using the dsPIC30F Microcontroller,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31711.