Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
POLYURETHANES AS BIOMEDICAL MATERIALS
Date
1990-01-01
Author
KUTAY, S
TINCER, T
Hasırcı, Nesrin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
61
views
0
downloads
Cite This
Polyurethane films were prepared using diphenylmethanediisocyanate [MDI] or hexamethylenediisocyanate [HDI] and poly(propylene‐ethylene) glycol, in order to test them as biomedical materials specifically for use as skin grafts. Other ingredients such as catalysts, chain extenders, solvents, etc., where not used in order to obtain medical purity. Mechanical properties, oxygen permeation and blood compatibility of these films were examined. Tensile strength, ultimate elongation and elastic modulus values were calculated. An increase in ultimate elongation and a decrease in tensile strength were observed when the amount of isocyanate‐containing compound was decreased in the prepared polymers. Oxygen permeability values also increased with an increase in polyol content of the prepared films. Blood compatibility tests showed that the film surfaces do not have thrombogenicity and can be considered biocompatible.
URI
https://hdl.handle.net/11511/31794
Journal
BRITISH POLYMER JOURNAL
DOI
https://doi.org/10.1002/pi.4980230316
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Poly(epsilon-caprolactone) composites containing gentamicin-loaded beta-tricalcium phosphate/gelatin microspheres as bone tissue supports
Sezer, Umran Aydemir; Aksoy, Eda Ayse; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2013-02-05)
In this work, novel antibacterial composites were prepared by using poly(epsilon-caprolactone) (PCL) as the main matrix material, and gentamicin-loaded microspheres composed of beta-tricalcium phosphate (beta-TCP) and gelatin. The purpose is to use this biodegradable material as a support for bone tissue. This composite system is expected to enhance bone regeneration by the presence of beta-TCP and prevent a possible infection that might occur around the defected bone region by the release of gentamicin. Th...
Hydroxyl-Terminated Poly(urethane acrylate) as a Soft Liner in Dental Applications: Synthesis and Characterization
Keskin, Selda; Usanmaz, Ali (Wiley, 2010-07-05)
Hydroxyl-terminated poly(urethane acrylate)s were synthesized for use in biomedical applications. Acrylate end capping via an interesterification reaction was successfully achieved with methacryloyl chloride addition to the hydroxyl ends of the polyurethane at low temperatures. 2,4-Toluene diisocyanate, 1,6-hexane diisocyanate, and methylene diphenyl diisocyanate were used as diisocyanates for urethane synthesis, and they were end-capped with methyl methacrylate and hydroxyethyl methacrylate. The nature of ...
Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering
Dalgıç, Ali Deniz; Tezcaner, Ayşen; Keskin, Dilek; Evis, Zafer (SAGE Publications, 2018-3-15)
In this study, novel graphene oxide-incorporated silicate-doped nano-hydroxyapatite composites were prepared and their potential use for bone tissue engineering was investigated by developing an electrospun poly(epsilon-caprolactone) scaffold. Nanocomposite groups were synthesized to have two different ratios of graphene oxide (2 and 4 wt%) to evaluate the effect of graphene oxide incorporation and groups with different silicate-doped nano-hydroxyapatite content was prepared to investigate optimum concentra...
Bacterial anti-adhesive and pH-induced antibacterial agent releasing ultra-thin films of zwitterionic copolymer micelles
Onat, Bora; Butun, Vural; Banerjee, Sreeparna; Erel Göktepe, İrem (2016-08-01)
We report on preparation of substrates with dual function coatings, i.e. bacterial anti-adhesive and antibacterial agent releasing polymer films of zwitterionic block copolymer micelles (BCMs). BCMs were obtained by pH-induced self-assembly of poly[3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate-b-2-(diisopropylamino)ethyl methacrylate] (beta PDMA-b-PDPA), resulting in BCMs with zwitterionic beta PDMA-coronae and pH-responsive PDPA-core. These zwitterionic BCMs were then used as building blocks...
Nanostructured anti-bacterial poly-lactic-co-glycolic acid films for skin tissue engineering applications
Karahaliloglu, Zeynep; Ercan, Batur; Chung, Stanley; Taylor, Erik; DENKBAŞ, EMİR BAKİ; Webster, Thomas J. (Wiley, 2014-12-01)
Major issues faced with the use of today's skin grafts are infection, scar tissue formation, insufficient keratinocyte (or skin producing cells) proliferation and high production costs. To overcome these limitations, we propose here for the first time, a nanofeatured poly(lactide-co-glycolide) (PLGA) membrane as a next generation antibacterial skin graft material. An alkaline surface treatment method was used to create random nanofeatures on PLGA membranes where sodium hydroxide (NaOH) concentration and exp...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. KUTAY, T. TINCER, and N. Hasırcı, “POLYURETHANES AS BIOMEDICAL MATERIALS,”
BRITISH POLYMER JOURNAL
, pp. 267–272, 1990, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/31794.