Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering

In this study, novel graphene oxide-incorporated silicate-doped nano-hydroxyapatite composites were prepared and their potential use for bone tissue engineering was investigated by developing an electrospun poly(epsilon-caprolactone) scaffold. Nanocomposite groups were synthesized to have two different ratios of graphene oxide (2 and 4 wt%) to evaluate the effect of graphene oxide incorporation and groups with different silicate-doped nano-hydroxyapatite content was prepared to investigate optimum concentrations of both silicate-doped nano-hydroxyapatite and graphene oxide. Three-dimensional poly(epsilon-caprolactone) scaffolds were prepared by wet electrospinning and reinforced with silicate-doped nano-hydroxyapatite/graphene oxide nanocomposite groups to improve bone regeneration potency. Microstructural and chemical characteristics of the scaffolds were investigated by X-ray diffraction, Fourier transform infrared spectroscope and scanning electron microscopy techniques. Protein adsorption and desorption on material surfaces were studied using fetal bovine serum. Presence of graphene oxide in the scaffold, dramatically increased the protein adsorption with decreased desorption. In vitro biocompatibility studies were conducted using human osteosarcoma cell line (Saos-2). Electrospun scaffold group that was prepared with effective concentrations of silicate-doped nano-hydroxyapatite and graphene oxide particles (poly(epsilon-caprolactone) - 10% silicate-doped nano-hydroxyapatite - 4% graphene oxide) showed improved adhesion, spreading, proliferation and alkaline phosphatase activity compared to other scaffold groups.
Journal of Biomaterials Applications


Free standing layer-by-layer films of polyethyleneimine and poly(l-lysine) for potential use in corneal stroma engineering
Altay, Gizem; Hasırcı, Vasıf Nejat; Khademhosseini, Ali; Department of Biomedical Engineering (2011)
In this study we fabricated free standing multilayer films of polyelectrolyte complexes for potential use in tissue engineering of corneal stroma by using the layer-by-layer (LbL) approach. In the formation of these LbL films negatively charged, photocrosslinkable (methacrylated) hyaluronic acid (MA-HA) was used along with polycations polyethyleneimine (PEI) and poly(L-lysine) (PLL). Type I collagen (Col) was blended in with PLL for improving the water absorption and cell attachment properties of the films....
3D porous bioceramic based boron-doped hydroxyapatite/baghdadite composite scaffolds for bone tissue engineering
Jodati, Hossein; Evis, Zafer; Tezcaner, Ayşen; Alshemary, Ammar Z.; Motameni, Ali (2023-04-01)
Making composite scaffolds is one of the well-known methods to improve the properties of scaffolds used in bone tissue engineering. In this study, novel ceramic-based 3D porous composite scaffolds were successfully prepared using boron-doped hydroxyapatite, as the primary component, and baghdadite, as the secondary component. The effects of making composites on the properties of boron-doped hydroxyapatite-based scaffolds were investigated in terms of physicochemical, mechanical, and biological properties. T...
Decellularized adipose tissue matrix-coated and simvastatin-loaded hydroxyapatite microspheres for bone regeneration
Kesim, Merve G.; Durucan, Caner; Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen (2022-01-01)
© 2022 Wiley Periodicals LLC.Simvastatin (SIM)-loaded and human decellularized adipose tissue (DAT)-coated porous hydroxyapatite (HAp) microspheres were developed for the first time to investigate their potential on bone regeneration. Microspheres were loaded with SIM and then coated with DAT for modifying SIM release and improving their biological response. HAp microspheres were prepared by water-in-oil emulsion method using camphene (C10H16) as porogen followed by camphene removal by freeze-drying and sin...
Poly(epsilon-caprolactone) Composite Scaffolds Loaded with Gentamicin-Containing beta-Tricalcium Phosphate/Gelatin Microspheres for Bone Tissue Engineering Applications
Sezer, Umran Aydemir; Arslantunalı Şahin, Damla; Aksoy, Eda Ayse; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin (2014-04-15)
In this study, novel poly(epsilon-caprolactone) (PCL) composite scaffolds were prepared for bone tissue engineering applications, where gentamicin-loaded -tricalcium phosphate (-TCP)/gelatin microspheres were added to PCL. The effects of the amount of -TCP/gelatin microspheres added to the PCL scaffold on various properties, such as the gentamicin release rate, biodegradability, morphology, mechanical strength, and pore size distribution, were investigated. A higher amount of filler caused a reduction in th...
Development of manganese-doped hydroxyapatite incorporated PCL electrospun 3D scaffolds coated with gelatin for bone tissue engineering
Samiei, Alaleh; Keskin, Dilek; Evis, Zafer; Department of Biomedical Engineering (2023-1-27)
Combination of polymers and bioceramics has increased their importance in bone tissue engineering (BTE) to treat various defects. Within this frame, in this thesis, it is aimed to develop a 3D gelatin-coated PCL scaffold combined with Mn-doped hydroxyapatite (HA) in order to investigate the effect of the doping element, i.e., the manganese (Mn) ion, on the structural and biological properties of the composite scaffold. Pure and Mn-doped HAs were synthesized using microwave irradiation, and the samples were ...
Citation Formats
A. D. Dalgıç, A. Tezcaner, D. Keskin, and Z. Evis, “Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering,” Journal of Biomaterials Applications, pp. 1392–1405, 2018, Accessed: 00, 2020. [Online]. Available: