Nanostructured anti-bacterial poly-lactic-co-glycolic acid films for skin tissue engineering applications

2014-12-01
Karahaliloglu, Zeynep
Ercan, Batur
Chung, Stanley
Taylor, Erik
DENKBAŞ, EMİR BAKİ
Webster, Thomas J.
Major issues faced with the use of today's skin grafts are infection, scar tissue formation, insufficient keratinocyte (or skin producing cells) proliferation and high production costs. To overcome these limitations, we propose here for the first time, a nanofeatured poly(lactide-co-glycolide) (PLGA) membrane as a next generation antibacterial skin graft material. An alkaline surface treatment method was used to create random nanofeatures on PLGA membranes where sodium hydroxide (NaOH) concentration and exposure times were altered to control surface morphology. Most significantly, and without the use of antibiotics, results showed a decrease in Staphylococcus aureus (a dangerous pathogen infecting skin grafts) growth for up to approximate to 40% after 2 days of culture on nanofeatured PLGA membranes compared to untreated controls. Results also showed that while bacteria growth was stunted, mammalian cell growth was not. Specifically, cell culture results showed an increase in human epidermal keratinocyte density, while the density of scar tissue forming human dermal fibroblasts, did not change on nanofeatured PLGA surfaces compared to the untreated controls after 3 days of culture. These findings indicate that the alkaline treatment of PLGA membranes is a promising quick and effective manner to limit scar tissue formation and bacterial invasion while increasing skin cell proliferation for improving numerous wound-healing applications. (c) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 4598-4608, 2014.
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A

Suggestions

Enzymatically induced mineralization of platelet-rich fibrin
Douglas, Timothy E. L.; Gassling, Volker; Declercq, Heidi A.; Purcz, Nicolai; Pamula, Elzbieta; Haugen, Havard J.; Chasan, Safak; de Mulder, Eric L. W.; Jansen, John A.; Leeuwenburgh, Sander C. G. (Wiley, 2012-05-01)
Membranes of the autologous blood-derived biomaterial platelet-rich fibrin (PRF) were functionalized by incorporation of alkaline phosphatase (ALP), an enzyme involved in mineralization of bone, and subsequently incubated in calcium glycerophosphate (CaGP) solution to induce PRFs mineralization with calcium phosphate (CaP) to improve PRFs suitability as a material for bone replacement. Incorporated ALP retained its bioactivity and induced formation of CaP material within PRF membranes, as confirmed by SEM, ...
Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering
Türkkan, Sibel; Atila, Deniz; Akdağ, Akın; Tezcaner, Ayşen (Wiley, 2018-10-01)
In this study, novel porous three-dimensional (3D) scaffolds from silk fibroin (SF) and functionalized (amidated and oxidized) citrus pectin (PEC) were developed for skin tissue engineering applications. Crosslinking was achieved by Schiff's reaction in borax presence as crosslinking coordinating agent and CaCl2 addition. After freeze-drying and methanol treatment, plasma treatment (10 W, 3 min) was applied to remove surface skin layer formed on scaffolds. 3D matrices had high porosity (83%) and interconnec...
Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering
Fathi-Achachelouei, Milad; Keskin, Dilek; Bat, Erhan; Vrana, Nihal E.; Tezcaner, Ayşen (Wiley, 2020-07-01)
Degeneration of articular cartilage due to damages, diseases, or age-related factors can significantly decrease the mobility of the patients. Various tissue engineering approaches which take advantage of stem cells and growth factors in a three-dimensional constructs have been used for reconstructing articular tissue. Proliferative impact of basic fibroblast growth factor (bFGF) and chondrogenic differentiation effect of transforming growth factor-beta 1 (TGF-beta 1) over mesenchymal stem cells have previou...
Biodegradable elastomers for biomedical applications and regenerative medicine
Bat, Erhan; Feijen, Jan; Grijpma, Dirk W.; Poot, Andre A. (Future Medicine Ltd, 2014-05-01)
Synthetic biodegradable polymers are of great value for the preparation of implants that are required to reside only temporarily in the body. The use of biodegradable polymers obviates the need for a second surgery to remove the implant, which is the case when a nondegradable implant is used. After implantation in the body, biomedical devices may be subjected to degradation and erosion. Understanding the mechanisms of these processes is essential for the development of biomedical devices or implants with a ...
Poly( amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering
Svobodova, Jana; Proks, Vladimir; Karabiyik, Ozge; Koyuncu, Ayse Ceren Calikoglu; Kose, Gamze Torun; Rypacek, Frantisek; Studenovska, Hana (Wiley, 2017-03-01)
In this study, fibrous scaffolds based on poly(gamma-benzyl-L-glutamate) (PBLG) were investigated in terms of the chondrogenic differentiation potential of human tooth germ stem cells (HTGSCs). Through the solution-assisted bonding of the fibres, fully connected scaffolds with pore sizes in the range 20-400 mu m were prepared. Biomimetic modification of the PBLG scaffolds was achieved by a two-step reaction procedure: first, aminolysis of the PBLG fibres' surface layers was performed, which resulted in an i...
Citation Formats
Z. Karahaliloglu, B. Ercan, S. Chung, E. Taylor, E. B. DENKBAŞ, and T. J. Webster, “Nanostructured anti-bacterial poly-lactic-co-glycolic acid films for skin tissue engineering applications,” JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, pp. 4598–4608, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45968.