Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Polyester based nerve guidance conduit design
Date
2010-03-01
Author
Yucel, Deniz
KÖSE, GAMZE
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Nerve conduits containing highly aligned architecture that mimics native tissues are essential for efficient regeneration of nerve injuries. In this study, a biodegradable nerve conduit was constructed by converting a porous micropatterned film (PHBV-P(L-D,L)LA-PLGA) into a tube wrapping aligned electrospun fibers (PHBV-PLGA). The polymers were chosen so that the protective tube would erode slower than the fibrous core to achieve complete healing before the tube eroded. The pattern dimensions and the porosity (58.95 (%) with a maximum pore size of 4-5 mu m) demonstrated that the micropatterned film would enable the migration, alignment and survival of native cells for proper regeneration. This film had sufficiently high mechanical properties (ultimate tensile strength: 3.13 MPa, Young's Modulus: 0.08 MPa) to serve as a nerve guide. Electrospun fibers, the inner part of the tubular construct, were well aligned with a fiber diameter of ca. 1.5 mu m. Fiber properties were especially influenced by polymer concentration. SEM showed that the fibers were aligned parallel to the groove axis of the micropatterned film within the tube as planned considering the nerve tissue architecture. This two component nerve conduit appears to have the right organization for testing in vitro and in vivo nerve tissue engineering studies.
Subject Keywords
Nerve regeneration
,
Nerve guide
,
Conduit
,
Electrospun mat
,
Micropattern
URI
https://hdl.handle.net/11511/31890
Journal
BIOMATERIALS
DOI
https://doi.org/10.1016/j.biomaterials.2009.11.013
Collections
Graduate School of Natural and Applied Sciences, Article