Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Differentiation of BMSCs into Nerve Precursor Cells on Fiber-Foam Constructs for Peripheral Nerve Tissue Engineering
Date
2018-06-01
Author
Dursun Usal, Tuğba
YÜCEL, DENİZ
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
205
views
0
downloads
Cite This
Bone marrow stem cells (BMSCs) are frequently used in nerve tissue engineering studies due to ease of their isolation and high potential for differentiation into nerve cells. A bilayer fiber-foam construct containing nanofibrous elements to house and guide BMSCs was designed as a model to study the regeneration of damaged peripheral nerve tissue and eventually serve as a nerve guide. The construct consisted of a) a macroporous bottom layer to serve as the backing and support, and for nutrient transport, and b) an electrospun, fibrous upper layer for cell attachment and guidance. Porosity and pore sizes of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) bottom layer were 85% and 5-200 μm, respectively, suitable for cell attachment and growth. Alignment of the cells is essential for cell-to-cell contact and the degree of alignment of electrospun PHBV/Collagen fibers was 11° when a frame type collector was used, while it was much higher (53°) for random fibers produced on an ordinary aluminum sheet collector. When the fibers were electrospun directly onto a PHBV foam attached on the frame type collector to create the bilayer, the degree of alignment of fibers decreased, alignment angle increased from 11° to 44°. This value did not change when the fibers were electrospun directly on the foams on the aluminum collector (53° vs 55°). A new media was designed to achieve comparable differentiation with the commercial media. It was found that the commercial Mesenchymal Stem Cell Neurogenic Differentiation Medium (PromoCell, Germany) was the better in terms of the expressions of neuronal markers nestin and β-III tubulin and the medium made in the lab with known constituents led to neuronal marker expressions very close to that with the commercial medium. Attachment and proliferation of the rBMSCs were higher on the random fiber mats, while alignment of cells was higher on the aligned fibers. In conclusion, the bilayer construct with aligned PHBV-collagen fibers on a PHBV foam was found to be more appropriate for peripheral nerve repair when used as a nerve guide
Subject Keywords
bone marrow stem cells
,
nerve tissue engineering
,
peripheral nerve regeneration
,
nanofibrous mats
,
nerve guide
URI
https://hdl.handle.net/11511/69549
Journal
Journal of Siberian Federal University. Biology
DOI
https://doi.org/10.17516/1997-1389-0054
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Characterization and identification of human mesenchymal stem cells at molecular level
Aksoy, Ceren; Severcan, Feride; Çetinkaya, Duygu Uçkan; Department of Biotechnology (2012)
Bone marrow mesenchymal stem cells (BM-MSCs) are pluripotent cells that can differentiate into a variety of non-hematopoietic tissues. They also maintain healthy heamatopoiesis by providing supportive cellular microenvironment into BM. In this thesis, MSCs were characterized in terms of their morphological, immunophenotypical and differentiation properties. Then, they were examined by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy together with hierarchical clustering, and FT...
Influence of micropatterns on human mesenchymal stem cell fate /
Hastürk, Onur; Hasırcı, Vasıf Nejat; Hasırcı, Nesrin; Department of Biotechnology (2016)
Mesenchymal stem cells (MSCs) are promising cell sources for tissue engineering applications as they can differentiate into a variety of adult cells types including osteoblasts. In vivo microenvironment of stem cells is known to provide both biochemical signals and micro- and nanoscale physical cues that influence the behavior and fate of stem cells. The use of soluble chemical factors is the most common strategy to guide the commitment of MSCs to specific lineages, but it is a cause of concern such as unsa...
A Bio and synthetic polymer based nerve guide tested under in vitro and in vivo conditions
Dursun Usal, Tuğba; Hasırcı, Vasıf Nejat; Department of Biotechnology (2019)
Damages to the peripheral nervous system due to age, diseases or trauma may lead to gap formation in nervous tissue and inhibit signal transfer. Nerve guides are used to bridge the neural gaps created as a result of these events. This study describes the design, construction, and testing of a nerve guide which carries inner guidance elements to provide an appropriate microenvironment for peripheral nerve regeneration. A methacrylated gelatin-poly(2-hydroxyethyl methacrylate) (GelMA-pHEMA) hydrogel and 3D pr...
Effect of double growth factor release on cartilage tissue engineering
Ertan, Ayse Burcu; Yilgor, Pinar; Bayyurt, Banu; Calikoglu, Ayse Ceren; Kaspar, Cigdem; Kök, Fatma Neşe; KÖSE, GAMZE; Hasırcı, Vasıf Nejat (2013-02-01)
The effects of double release of insulin-like growth factor I (IGF-I) and growth factor 1 (TGF1) from nanoparticles on the growth of bone marrow mesenchymal stem cells and their differentiation into cartilage cells were studied on PLGA scaffolds. The release was achieved by using nanoparticles of poly(lactic acid-co-glycolic acid) (PLGA) and poly(N-isopropylacrylamide) (PNIPAM) carrying IGF-I and TGF1, respectively. On tissue culture polystyrene (TCPS), TGF-1 released from PNIPAM nanoparticles was found to ...
Evaluating Oxygen Tensions Related to Bone Marrow and Matrix for MSC Differentiation in 2D and 3D Biomimetic Lamellar Scaffolds
Sayin, Esen; Baran, Erkan Turker; Elsheikh, Ahmed; Mudera, Vivek; Cheema, Umber; Hasırcı, Vasıf Nejat (2021-04-01)
The physiological O-2 microenvironment of mesenchymal stem cells (MSCs) and osteoblasts and the dimensionality of a substrate are known to be important in regulating cell phenotype and function. By providing the physiologically normoxic environments of bone marrow (5%) and matrix (12%), we assessed their potential to maintain stemness, induce osteogenic differentiation, and enhance the material properties in the micropatterned collagen/silk fibroin scaffolds that were produced in 2D or 3D. Expression of ost...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Dursun Usal, D. YÜCEL, and V. N. Hasırcı, “Differentiation of BMSCs into Nerve Precursor Cells on Fiber-Foam Constructs for Peripheral Nerve Tissue Engineering,”
Journal of Siberian Federal University. Biology
, pp. 119–130, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69549.