Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001

2003-04-01
The kinetics and the effects of various parameters on hydrogen production by Rhodobacter sphaeroides O.U. 001 were investigated in a batch column photobioreactor. In particular, the effect of the inoculum age and the implementation of a light-dark cycle illumination scheme for emulating natural sunlight have been investigated in detail. The possibility of using yeast extract to replace the rather expensive vitamin mixture in the medium was also studied. The results show that hydrogen production is decreased when the initially inoculated bacteria have a high culture age. Exposure of the bacterial culture to light-dark cycles increased the amount of hydrogen compared to continuous illumination, all other parameters remaining the same. Similarly, the use of yeast extract to replace the vitamins increased the growth and hydrogen production rates, however, with a slight reduction in the total amount of gas produced and the hydrogen fraction in the evolved gas. (C) 2002 International Association for Hydrogen Energy.
International Journal of Hydrogen Energy

Suggestions

Continuous hydrogen production by Rhodobacter sphaeroides O.U.001
Eroğlu, İnci; Aslan, K; Gunduz, M; Yucel, M; Turker, L (1997-06-26)
This paper describes hydrogen gas production by Rhodobacter sphaeroides O.U.001 using a column photobioreactor in batch and continuous operation. The effect of substrates on the hydrogen production rate was investigated in batch-type photobioreactor experiments. Substrate concentrations (L-malic acid and sodium glutamate) were measured by using high-pressure liquid chromatography. The gas produced was analyzed by gas chromatography.
Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides OU 001
Yetis, M; Gündüz, Ufuk; Eroglu, I; Yucel, M; Turker, L (2000-11-01)
Pretreated sugar refinery wastewater (SRWW) was used for the production of hydrogen by Rhodobacter sphaeroides O.U.001 in a 0.4 1 column photobioreactor. Hydrogen was produced at a rate of 0.001 1 hydrogen/h/l culture in 20% dilution of SRWW. To adjust the carbon concentration to 70 mM and nitrogen concentration to 2 mM, sucrose or l-malic acid was added as carbon source and sodium glutamate was added as nitrogen source to the 20% dilution of SRWW. By these adjustments, hydrogen production rate was increase...
Kinetic analysis of photosynthetic growth, hydrogen production and dual substrate utilization by Rhodobacter capsulatus
Sevinc, Pelin; Gündüz, Ufuk; EROĞLU, İNCİ; Yucel, Meral (2012-11-01)
Rhodobacter capsulatus is purple non-sulfur (PNS) bacterium which can produce hydrogen and CO2 by utilizing volatile organic acids in presence of light under anaerobic conditions. Photofermentation by PNS bacteria is strongly affected by temperature and light intensity. In the present study we present the kinetic analysis of growth, hydrogen production, and dual consumption of acetic acid and lactic acid at different temperatures (20, 30 and 38 degrees C) and light intensities (1500, 2000, 3000, 4000 and 50...
Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor
Eroglu, I; Aslan, K; Gündüz, Ufuk; Yucel, M; Turker, L (1999-04-30)
The effect of L-malic acid and sodium glutamate, which serve as the carbon and nitrogen source, respectively, on hydrogen production by Rhodobacter sphaeroides O.U.001 has been investigated in a batch water jacketed glass column photobioreactor (PBR), which has an inner volume of 400 ml. The PER was operated at different carbon to nitrogen ratios at 32 degrees C with a tungsten lamp at a light intensity of 200 W m(-2). Carbon to nitrogen ratio was found to be an important parameter for bio-hydrogen producti...
PRODUCTION OF L(+)-LACTIC ACID USING IMMOBILIZED RHIZOPUS-ORYZAE - REACTOR PERFORMANCE-BASED ON KINETIC-MODEL AND SIMULATION
Hamamcı, Haluk (1994-02-01)
The production of L(+)-lactic acid using alginate immobilized Rhizopus oryzae in tapered-column fluidized-bed batch reactor was tested and simulated using the kinetic data taken independently in shake-flask cultures. The data show saturation kinetics with substrate and product inhibitions in linear form. Analysis of the kinetic data gave kinetic constants: V-m, 11.04 g lactic acid/(L-bead. h); K-m, 20.9 g glucose/L; and K-i, 365 g glucose/L for lactic acid production. The product inhibition constant, K-p, w...
Citation Formats
H. Koku, U. Gündüz, and L. Türker, “Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001,” International Journal of Hydrogen Energy, pp. 381–388, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32031.