Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Catalase adsorption onto cibacron blue F3GA and Fe(III)derivatized poly(hydroxyethyl methacrylate) membranes and application to a continuous system
Date
1997-06-25
Author
Arica, MY
Denizli, A
Salih, B
Piskin, E
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
142
views
0
downloads
Cite This
Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) membranes were prepared by W-initiated photopolymerization of HEMA in the presence of an initiator (a-a'-azobisisobutyronitrile, AIBN). An affinity dye, i.e. Cibacron Blue F3GA (CB) was incorporated covalently and then complexed with Fe(III) ions. The polyHEMA-CB and polyHEMA-CB-Fe(III) derivatized membranes were used in the adsorption of catalase (CAT). The enzyme-loading capability of the Fe(III)-containing membrane (23.6 mu g/cm(2)) was greater than that of the poly(HEMA)-CB derivatized membrane (17.1 mu g/cm(2)). The adsorption phenomena appeared to follow a typical Langmuir isotherm. The K-m values for both immobilized catalases (poly(HEMA)-CB-CAT (22.4 mM) and poly(HEMA)-CB-Fe(III)-CAT (19.3 mM)) were higher than that of free enzyme (16.5 mM). Optimum operational temperature was 5 degrees C higher than that of the free enzyme and was significantly broader. A similar observation was made for the optimum pH. Operational, thermal and storage stabilities were found to increase with immobilization, especially in the presence of Fe(III). It was observed that enzyme could be repeatedly adsorbed and desorbed without significant loss in adsorption capacity or enzyme activity.
Subject Keywords
Affinity membranes
,
Microporous
,
Porous membranes
,
Biological membranes
,
Enzyme immobilization
,
Dye affinity
URI
https://hdl.handle.net/11511/32178
Journal
JOURNAL OF MEMBRANE SCIENCE
DOI
https://doi.org/10.1016/s0376-7388(96)00334-1
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Dye derived and metal incorporated affinity poly(2-hydroxyethyl methacrylate) membranes for use in enzyme immobilization
Arica, MY; Denizli, A; Baran, T; Hasırcı, Vasıf Nejat (1998-08-01)
Microporous poly(2-hydroxyethyl methacrylate) (PHEMA) membranes were prepared by W-initiated photopolymerization of HEMA in the presence of an initiator (alpha,alpha'-azobisisobutyronitrile, AIBN). An affinity dye Cibacron Blue F3GA (CB) was attached covalently and then Fe3+ ions incorporated. The PHEMA-CB and PHEMA-CB-Fe3+ membranes derived were used for adsorption of glucose oxidase (GOD). The adsorption capacities of these membranes were determined under conditions of different pH and with different conc...
Cibacron Blue F3GA-incorporated macroporous poly(2-hydroxyethyl methacrylate) affinity membranes for heavy metal removal
Denizli, A; Salih, B; Arica, MY; Kesenci, K; Hasırcı, Vasıf Nejat; Piskin, E (1997-01-17)
Macroporous poly(2-hydroxyethyl methacrylate), poly(HEMA), membranes were prepared by UV-initiated photo-polymerization of HEMA in the presence of an initiator (azobisisobutyronitrile, AIBN). An affinity dye, i.e., Cibacron Blue F3GA was then incorporated covalently. These affinity membranes with a swelling ratio of 58%, and carrying 10.67 mmol Cibacron Blue F3GA/m(2) membrane were used in the adsorption/desorption of some selected heavy metal ions [i.e., As(III), Cd(II) and Pb(II)] from aqueous media. Very...
Covalent immobilization of invertase on chemically activated poly(2-hydroxyethyl methacrylate) microbeads
Altinok, H.; Aksoy, S.; Tumturk, H.; Hasırcı, Nesrin (2006-10-01)
Properties of invertase immobilized on poly(2-hydroxyethyl methacrylate) microbeads activated by epichlorohydrin or cyanuric chloride were studied. After 20 repeated uses for 3 days, the activity of the immobilized enzyme was 92-93%.
Comparison of beta-galactosidase immobilization by entrapment in and adsorption on poly(2-hydroxyethylmethacrylate) membranes
Baran, T; Arica, MY; Denizli, A; Hasırcı, Vasıf Nejat (1997-12-01)
beta-Galactosidase was immobilized in/on poly(2-hydroxyethyl methacrylate) (pHEMA) membranes by two different methods: adsorption on Cibacron F3GA derivatized pHEMA membranes (pHEMA-CB), and entrapment in the bulk of the pHEMA membranes. The maximum beta-galactosidase adsorption on pHEMA-CB membranes was obtained as 95.6 mu g cm(-2) in 2.0 mg cm(-3) enzyme solution. The adsorption phenomena appeared to follow a typical Langmuir isotherm. In the entrapment, an increase in beta-galactosidase loading resulted ...
PERMEABILITY OF PHEMA MEMBRANES PREPARED BY PHOTOINITIATION
ARICA, MY; Hasırcı, Vasıf Nejat (1993-01-01)
Poly(2-hydroxyethyl methacrylate) membranes were prepared in aqueous media with different ions and ionic strengths. The enzyme glucose oxidase was incorporated into some of these membranes. It was found that membrane water contents and ionic strengths have a linear relationship as long as the salt is not changed. When the salt was varied, only a relationship between salt concentration and water content could be observed. The membrane permeabilities were all found to be of the same order (10(-8) cm2 s-1) but...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Arica, A. Denizli, B. Salih, E. Piskin, and V. N. Hasırcı, “Catalase adsorption onto cibacron blue F3GA and Fe(III)derivatized poly(hydroxyethyl methacrylate) membranes and application to a continuous system,”
JOURNAL OF MEMBRANE SCIENCE
, pp. 65–76, 1997, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32178.