Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Compact autonomous voltammetric sensor for sulfide monitoring in deep sea vent habitats
Date
2013-10-01
Author
CONTREİRA-PEREİRA, Leonardo
Yücel, Mustafa
OMANOVİC, Dario
BRULPORT, Jean-Pierre
LE BRİS, Nadine
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
163
views
0
downloads
Cite This
In situ chemical monitoring at deep-sea hydrothermal vents remains a challenge. Particularly, tools are still scarce for assessing the ranges and temporal variability of sulfide in these harsh environmental conditions. There is a particular need for compact and relatively simple devices to enlarge the capacity of in situ measurements of this major energy source in chemosynthetic ecosystems. With this objective, a voltammetric sensor based on a bare-silver working electrode was developed and tested in real conditions. In the laboratory, the sensor presented a linear response from 10 to 1000 mu M sulfide, together with a low pH sensitivity and moderate temperature dependence. The device was operated at 850 and 2500 m depth during 3 cruises over two different vent fields. The autonomous potentiostat (290 mm length, empty set 35 mm) equipped with laboratory-made electrodes was mounted on a wand, for manipulation from a submersible, or on a holder for unattended deployments. The system was applied in mussel, tubeworm and annelid worm habitats, characterized by different ranges of sulfide concentration, pH and temperature. Calibrations performed before and after each deployment confirmed the stability of the sensor response over a few hours to 11 days, with a maximum drift of 11.4% during this period. Short-term measurements in the vicinity of Riftia pachyptila and Alvinella pompejana were consistent with previous results on these habitats, with concentrations ranging from 20 to 140 mu M and 100 to 450 mu M and sulfide versus temperature ratio of 14 mu M degrees C-1 and 20 mu M degrees C-1, respectively. A continuous 4-day record on a bed of Bathymodiolus Thermophilus mussels furthermore illustrated the capacity of the sensor to capture fluctuating sulfide concentration between 0 and 70 mu M, in combination to temperature, and to investigate the changes in the sulfide versus temperature ratio over time. The method has a higher detection limit ( < 10 mu M) than previous in situ sulfide measurement methods, but has the advantage of selectivity to free sulfide (compared to colorimetry), low pH sensitivity (compared to amperometry) and lower reconditioning requirement for electrode surface (with respect to gold-amalgam voltammetry). This sensor is therefore a valuable complementary tool for discrete and continuous measurements within the moderate temperature environment of fauna at deep-sea vents.
Subject Keywords
Deep sea
,
Hydrothermal
,
Chemosynthetic fauna
,
Sulfide
,
Voltammetry
,
Habitat
,
EPR
URI
https://hdl.handle.net/11511/32403
Journal
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS
DOI
https://doi.org/10.1016/j.dsr.2013.05.014
Collections
Graduate School of Marine Sciences, Article
Suggestions
OpenMETU
Core
Hydrothermal energy transfer and organic carbon production at the deep seafloor
LE BRİS, Nadine; Yücel, Mustafa; DAS, Anindita; Sievert, Stefan M.; LokaBharathi, PonnaPakkam; Girguis, Peter R. (2019-01-18)
In just four decades, hundreds of hydrothermal vent fields have been discovered, widely distributed along tectonic plate boundaries on the ocean floor. Vent invertebrate biomass reaching up to tens of kilograms per square meter has attracted attention as a potential contributor to the organic carbon pool available in the resource-limited deep sea. But the rate of chemosynthetic production of organic carbon at deep-sea hydrothermal vents is highly variable and still poorly constrained. Despite the advent of ...
Temporal trends in vent fluid iron and sulfide chemistry following the 2005/2006 eruption at East Pacific Rise, 9 degrees 50 ' N
Yücel, Mustafa (2013-04-01)
The chemistry of vent fluids that emanate to the seafloor undergoes dramatic changes after volcanic eruptions. Data on these changes are still limited, but the best studied example is the East Pacific Rise (EPR) at 9 degrees 50N, where the temporal evolution of the vent fluid chemistry after the 1991/1992 eruption was documented. The area underwent another eruption sequence during late 2005/early 2006, and here we show that a similar evolution is recurring in the iron and sulfide contents of the high-temper...
Whole-cell fluorescent bacterial bioreporter for arsenic detection in water
Elcin, E.; Oktem, H. A. (Springer Science and Business Media LLC, 2019-10-01)
Microbial whole-cell bioreporters have been developed for environmental monitoring of arsenic contamination. Despite the great interest in bacterial bioreporters for arsenite detection, relatively few studies reported their response to arsenate levels. In this study, green fluorescent protein-based whole-cell Escherichia coli bioreporter was constructed for the measurement of both bioavailable arsenite and arsenate in water. The developed bacterial bioreporter has much higher sensitivity toward arsenate in ...
Modeling anaerobic dechlorination of polychlorinated biphenyls
Demirtepe, Hale; İmamoğlu, İpek; Department of Environmental Engineering (2012)
This study aims to investigate the fate of polychlorinated biphenyls (PCBs) in sediments via using an anaerobic dechlorination model (ADM). PCBs are ubiquitous environmental pollutants, accumulated mostly in aquatic sediments. Significant attention was placed on the anaerobic dechlorination of PCBs since this process leads to the conversion of highly-chlorinated biphenyls to lower chlorinated ones, resulting in less toxic and more biodegradable congeners. An ADM was developed previously for the identificati...
Evaluation of a compacted bentonite/sand seal for underground waste repository isolation
Akgün, Haluk; AKTÜRK, ÖZGÜR (Springer Science and Business Media LLC, 2006-06-01)
This study investigates the performance of an optimum compacted bentonite/sand mixture seal for the isolation of underground waste repositories. Engineering geological tests such as compaction, flow, swelling, mechanical and shear strength tests have been conducted to select an optimum mixture and to recommend a stable bentonite/sand seal length-to-radius ratio (L/a) as far as the factor of safety (F) is concerned. The results of the compaction permeameter tests led to a recommendation to select an optimum ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. CONTREİRA-PEREİRA, M. Yücel, D. OMANOVİC, J.-P. BRULPORT, and N. LE BRİS, “Compact autonomous voltammetric sensor for sulfide monitoring in deep sea vent habitats,”
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS
, pp. 47–57, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32403.