Fabrication of nano- to micron-sized patterns using zeolites: Its application in BSA adsorption

2014-06-01
Kirdeciler, SALİH KAAN
Özen, Can
Akata, Burcu
Nano to micron-sized zeolite A (Z-A) and silicalite (Z-SIL) patterns were generated using the combinations of electron beam lithography (EBL) or photolithography (PL) with direct attachment method to be able to generate differentiated areas on a single surface in a cheap and facile way. The possibility to generate minimum sized zeolite patterns on top of zeolite monolayers was investigated by using EBL to understand the capability of the system for the first time. Also generation of large scale zeolite patterns on top of a different zeolite monolayer was investigated by using PL allowing the generation of differentiated surfaces for various potential applications such as selective adsorption studies. With this combination, it was shown that creating 3D zeolite architectures of different types with a perfect control in all dimensions was possible without the using any chemical linker. In order to test the potential different behaviors that zeolites of different properties are offering in the adsorption of biomolecules, zeolite patterned surfaces developed by PL were subjected to adsorption studies with bovine serum albumin (BSA). Irrespective of zeolite type, BSA always preferred the patterned regions rather than the underlying zeolite monolayers. It can be speculated that the obtained difference in roughness values facilitates the protein to be selectively adsorbed onto surfaces with increased roughness, i.e., the patterned regions. Moreover, we observed similar to 2-fold fluorescence intensity difference between Z-SIL and Z-A patterns, which were subjected to FITC-BSA solution. Hydrophobic interactions and charge repulsion are considered as two critical forces responsible for the observed adsorption differences.
MICROPOROUS AND MESOPOROUS MATERIALS

Suggestions

Synthesis of CuO nanostructures on zeolite-Y and investigation of their CO2 adsorption properties
Boruban, Cansu; Nalbant Esentürk, Emren (2017-10-01)
Copper(II) oxide (CuO) nanoparticles (NPs) in two different morphologies, spiky and spherical, were synthesized on zeolite-Y by a modified impregnation method, and their CO2 adsorbing capabilities were investigated under standard conditions (1 atm and 298 K). The properties and CO2 adsorption performances of the hybrid systems were characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray, X-ray diffraction, X-ray photoelectron spectroscopy, atomic absorption s...
Modeling and fabrication of electrostatically actuated diaphragms for on-chip valving of MEMS-compatible microfluidic systems
Atik, Ali Can; Ozkan, Metin Dundar; Ozgur, Ebru; Külah, Haluk; Yıldırım, Ender (IOP Publishing, 2020-11-01)
This paper presents an analytical model to estimate the actuation potential of an electrostatic parylene-C diaphragm, processed on a glass wafer using standard microelectromechanical systems (MEMS) process technology, and integrable to polydimethylsiloxane (PDMS) based lab-on-a-chip systems to construct a normally-closed microvalve for flow manipulation. The accurate estimation of the pull-in voltage of the diaphragm is critical to preserve the feasibility of integration. Thus, we introduced an analytical m...
Characterization of cross-coupling in capacitive micromachined ultrasonic transducers
Bayram, Barış; Yaralioglu, GG; Oralkan, O; Lin, DS; Zhuang, XF; Ergun, AS; Sarioglu, AF; Wong, SH; Khuri-Yakub, BT (2005-01-01)
This paper analyzes element-to-element and cell-to-cell cross-coupling in capacitive micromachined ultrasonic transducers (cMUTs) using an interferometer. In a 1-D linear cMUT array immersed in oil, a single element was excited, and membrane displacements were measured at different positions along the array with an interferometer. Electrical measurements of the received voltage on each array element were also performed simultaneously to verify the optical measurements. The array was then covered with a poly...
Synthesis and Characterization of a Luminol Based Chemiluminescent Trimeric System
Kesimal, Busra; Balci, Burcu; Çakal, Deniz; Önal, Ahmet Muhtar; Cihaner, Atilla (2023-01-01)
A luminol based chemiluminescent trimeric system, namely 2,3-dihydro-5,8-di(thiophen-2-yl)phthalazine-1,4-dione (T2B-Lum), bearing thiophene rings as donor units and 2,3-dihydrophthalazine-1,4-dione as an acceptor unit was synthesized in two steps via donor-acceptor-donor approach using two different methods. It was found that T2B-Lum emits chemiluminescent light when exposed to H2O2 in a basic medium, and the presence of substituents and the type of aromatic ring bearing chemiluminescent active group have ...
Magnetic Fe3O4-chitosan micro- and nanoparticles for wastewater treatment
ŞAHBAZ, DENİZ AKIN; YAKAR, ARZU; Gündüz, Ufuk (2019-08-18)
In this study, first, magnetic nanoparticles (MNP) were synthesized using a coprecipitation method and the synthesized particles were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and vibrating sample magnetometry (VSM). According to DLS and VSM analyses results, it was seen that the size of the MNP was smaller than 10 nm and they exhibited superparamagnetic properties, respectively. Then, magnetic Fe3O4-chitosan micro/n...
Citation Formats
S. K. Kirdeciler, C. Özen, and B. Akata, “Fabrication of nano- to micron-sized patterns using zeolites: Its application in BSA adsorption,” MICROPOROUS AND MESOPOROUS MATERIALS, pp. 59–66, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32422.