Characterization of β-cyclodextrin modified SiO2

2011-05-01
Nielsen, Ronnie
Kingshott, Peter
Uyar, Tamer
Hacaloğlu, Jale
Larsen, Kim L.
Silica particles containing a layer of beta-cyclodextrins were synthesized using a modified method of Armstrong (1985). The modified silica particles were extensively characterized to both the presence and amount of beta-cyclodextrin introduced onto the surface. Raman confirmed that beta-cyclodextrin was introduced onto the particle. The combination of thermogravmetric analysis (TGA) and direct pyrolysis mass spectroscopy were used to determine the amount and the chemical composition of organic material present on the silica, respectively. The two methods confirmed that beta-cyclodextrin was successfully introduced in amounts comparable to earlier literature values. The values obtained by TGA were compared to amounts found by elemental analysis and XPS. The elemental analysis and TGA found the same amount of beta-cyclodextrin, while the XPS values were in the region of 1.5 times higher. This suggests a heterogeneous distribution of the beta-cyclodextrin on the silica particles.
Surface and Interface Analysis

Suggestions

Synthesis and characterization of boron carbide films by plasma-enhanced chemical vapor deposition
Eroglu, OD; Sezgi, Naime Aslı; Ozbelge, HO; Durmazucar, HH (2003-03-01)
The plasma-enhanced chemical vapor deposition of boron carbide was investigated on quartz glass and alumina substrates from a gas mixture of BCl3, H-2, and CH4 in an inductively coupled plasma (ICP) medium produced by a radio frequency (RF) discharged onto the gases passing through a tubular reactor under atmospheric pressure. A thin solid boron carbide coating with a gray color was deposited on both substrates. The results of XRD revealed that the major solid phase formed in the coating material was beta-r...
Characterization of electrochemically synthesized p-toluene sulfonic acid doped polypyrrole by direct insertion probe pyrolysis mass spectrometry
Uyar, Tamer; Toppare, Levent Kamil; Hacaloğlu, Jale (2002-01-01)
A direct insertion probe pyrolysis mass spectrometry technique was used to perform a systematic thermal characterization of conducting polypyrrole doped with p-toluene sulfonic acid. The effect of dopant concentration on thermal stability and degradation products was investigated using undoped and dedoped polypyrrole samples. The data indicate that polymerization of pyrrole in the absence of dopant produces an aromatic structure, which transforms into the quinoid form at high dopant concentrations. Reductio...
Characterization of conducting copolymer of pyrrole via pyrolysis mass spectrometry
Levent, Anil; Hacaloğlu, Jale; Toppare, Levent Kamil (2008-03-01)
In this work, structural and thermal characterization of BF4- doped copolymer of pyrrole (PPy) with 2-methylbutyl-2-(3-thienyl)acetate prepared by electrochemical polymerization were performed via a pyrolysis mass spectrometry technique. The pyrolysis mass spectrometry data of the copolymer PPy/PMBTA, and the homopolymers; polypyrrole, PPy, and poly(2-methylbutyl-2-(3-thienyl)acetate), PMBTA were analyzed and compared. It has been determined that when the electrochemical polymerization of pyrrole was achiev...
Analysis of surface structures using XPS with external stimuli
Ertaş, Gülay (2006-01-01)
X-ray Photoelectron Spectroscopy, XPS, due to the perfect match of its probe length (1-10 nm) to nanoparticle size, chemical specificity, and susceptibility to electrical charges, is ideally suited for harvesting chemical, physical and electrical information from nanosized surface structures. In addition, by recording XPS spectra while applying external d.c. and/or pulsed voltage stimuli, it is also possible to control the extent of charging and extract various analytical information. In the simplest form, ...
Production of boron nitride nanotubes from the reaction of NH₃ with boron and iron powder mixture
Noyan, Selin; Sezgi, Naime Aslı; Department of Chemical Engineering (2012)
Boron nitride nanotubes (BNNTs), which are structurally similar to carbon nanotubes (CNTs), were synthesized in 1995 for the first time. They are made up by folding atom sheets which consist of boron and nitrogen atoms into cylindrical form. After their discovery, BNNTs have been attracting great attention due to their extraordinary mechanical, thermal, electrical, and optical properties. In this study, BNNTs were synthesized from the reaction of ammonia gas with the boron and iron powder mixture in a tubul...
Citation Formats
R. Nielsen, P. Kingshott, T. Uyar, J. Hacaloğlu, and K. L. Larsen, “Characterization of β-cyclodextrin modified SiO2,” Surface and Interface Analysis, pp. 884–892, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32534.