Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Sequential growth factor delivery from complexed microspheres for bone tissue engineering
Date
2008-11-01
Author
Basmanav, F. Buket
KÖSE, GAMZE
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
190
views
0
downloads
Cite This
Aim of the study was to design a 3D tissue-engineering scaffold capable of sequentially delivering two bone morphogenetic proteins (BMP). The novel delivery system consisted of microspheres of polyelectrolyte complexes of poly(4-vinyl pyridine) (P4VN) and alginic acid loaded with the growth factors BMP-2 and BMP-7 which themselves were loaded into the scaffolds constructed of PLGA. Microspheres carrying the growth factors were prepared using polyelectrolyte solutions with different concentrations (4-10%) to control the growth factor release rate. Release kinetics was studied using albumin as the model drug and the populations that release their contents very early and very late in the release study were selected to carry BMP-2 and BMP-7, respectively. Foam porosity changed when the microspheres were loaded. Bone marrow derived stem cells (BMSC) from rats were seeded into these foams. Alkaline phosphatase (ALP) activities were found to be lowest and cell proliferation was highest at all time points with foams carrying both the microsphere populations, regardless of BMP presence. With the present doses used neither BMP-2 nor BMP-7 delivery had any direct effect on proliferation, however, they enhanced osteogenic differentiation. Co-administration of BMP enhanced osteogenic differentiation to a higher degree than with their single administration.
Subject Keywords
Bone Tissue Engineering
,
Bone Morphogenetic Proteins
,
Complex Microspheres
,
Sequential Delivery
URI
https://hdl.handle.net/11511/32551
Journal
BIOMATERIALS
DOI
https://doi.org/10.1016/j.biomaterials.2008.07.017
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Sequential BMP-2/BMP-7 delivery from polyester nanocapsules
Yilgor, P.; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2010-05-01)
The aim of this study was to develop a nanosized, controlled growth factor release system to incorporate into tissue engineering scaffolds and thus activate the cells seeded in the scaffold. Nanocapsules of poly(lactic acid-co-glycolic acid) (PLGA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were loaded with the bone morphogenetic proteins BMP-2 and BMP-7, respectively, and with bovine serum albumin (BSA), the model protein. BSA-loading efficiency and release kinetics were used to determine the ...
Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds
Ozturk, Nihan; Girotti, Alessandra; KÖSE, GAMZE; Rodriguez-Cabello, Jose C.; Hasırcı, Vasıf Nejat (2009-10-01)
In this study a tissue engineering scaffold was constructed from poly(N-isopropylacrylamide) (pNIPAM) to study the influence of strain on cell proliferation and differentiation. The effect of surface chemistry and topography on bone marrow mesenchymal stem cells was also investigated. Micropatterned pNIPAM films (channels with 10 mu m groove width, 2 mu m ridge width, 20 mu m depth) were prepared by photo-polymerization. The films were chemically modified by adsorption of a genetically engineered and temper...
Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering
Yilgor, Pinar; Tuzlakoglu, Kadriye; Reis, Rui L.; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat (2009-07-01)
The aim of this study was to develop a 3-D construct carrying an inherent sequential growth factor delivery system. Poly(lactic acid-co-glycolic acid) (PLGA) nanocapsules loaded with bone morphogenetic protein BMP-2 and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanocapsules loaded with BIVIP-7 made the early release of BMP-2 and longer term release of BMP-7 possible. 3-D fiber mesh scaffolds were prepared from chitosan and from chitosan-PEO by wet spinning. Chitosan of 4% concentration in 2% aceti...
Free standing layer-by-layer films of polyethyleneimine and poly(l-lysine) for potential use in corneal stroma engineering
Altay, Gizem; Hasırcı, Vasıf Nejat; Khademhosseini, Ali; Department of Biomedical Engineering (2011)
In this study we fabricated free standing multilayer films of polyelectrolyte complexes for potential use in tissue engineering of corneal stroma by using the layer-by-layer (LbL) approach. In the formation of these LbL films negatively charged, photocrosslinkable (methacrylated) hyaluronic acid (MA-HA) was used along with polycations polyethyleneimine (PEI) and poly(L-lysine) (PLL). Type I collagen (Col) was blended in with PLL for improving the water absorption and cell attachment properties of the films....
Silicate-doped nano-hydroxyapatite/graphene oxide composite reinforced fibrous scaffolds for bone tissue engineering
Dalgıç, Ali Deniz; Tezcaner, Ayşen; Keskin, Dilek; Evis, Zafer (SAGE Publications, 2018-3-15)
In this study, novel graphene oxide-incorporated silicate-doped nano-hydroxyapatite composites were prepared and their potential use for bone tissue engineering was investigated by developing an electrospun poly(epsilon-caprolactone) scaffold. Nanocomposite groups were synthesized to have two different ratios of graphene oxide (2 and 4 wt%) to evaluate the effect of graphene oxide incorporation and groups with different silicate-doped nano-hydroxyapatite content was prepared to investigate optimum concentra...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. B. Basmanav, G. KÖSE, and V. N. Hasırcı, “Sequential growth factor delivery from complexed microspheres for bone tissue engineering,”
BIOMATERIALS
, pp. 4195–4204, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32551.