Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Tissue Engineered, Guided Nerve Tube Consisting of Aligned Neural Stem Cells and Astrocytes
Date
2010-12-01
Author
Yucel, Deniz
Kose, Gamze Torun
Hasırcı, Vasıf Nejat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
226
views
0
downloads
Cite This
Injury of the nervous system, particularly in the spinal cord, impairs the quality of life of the patient by resulting in permanent loss of neurologic function. The main limitation in spinal cord regeneration is the lack of extracellular matrix to guide nerves for functional recovery of the transected nerve tissue. In the present study, a tissue engineered nerve tube was prepared by wrapping neural stem cells (NSCs) on aligned fibers using a micropatterned film with astrocytes aligned along the microgrooves to support the NSCs. Initially the cell behavior on micropatterns and parallel fibers was investigated with cytoskeletal and nuclear staining, immunocytochemistry, and proliferation assay using the fiber and the film system separately. The results showed that both cells, NSCs in undifferentiated and astrocytes in differentiated form, were oriented in the direction of the guiding and support elements, the microgrooves, and the microfibers. They were able to grow and increase in number on these cell carriers. This trend was also maintained after the components were brought together in a nerve tube form and testing in coculture. The cells were able to survive and maintained their orientation in the 3D tissue engineered construct. The guided nerve tissue engineering approach tested in the present study with parallel NSCs and support cells in the tubular construct is expected to provide an appropriate environment for nerve regeneration in vivo.
Subject Keywords
Spinal-cord-injury
,
Axonal regeneration
,
In-vitro
,
Corticospinal tract
,
Neurite growth
,
Schwann-cells
,
Neonatal-rat
,
Guidance
,
Repair
,
Scaffolds
URI
https://hdl.handle.net/11511/32597
Journal
BIOMACROMOLECULES
DOI
https://doi.org/10.1021/bm1010323
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Study on the influence of scaffold inner organization on the treatment of spinal cord injury
Dursun, Tuğba; Hasırcı, Deniz; Yücel, Deniz; Department of Biotechnology (2013)
Permanent loss of neurologic function occurs when the central nervous system (CNS) is injured. Nerve regeneration is extremely limited because of dense scar tissue formation at the lesion site, especially in the spinal cord. For the treatment of this type of injury, different strategies are needed. The emerging approach to solve these problems is to provide a physical support via tubular bridging devices such as “nerve guides”. They are used to bridge the neural gaps in the treatment of spinal cord injury, ...
Multiwalled Carbon Nanotube- Poly(2-Hydroxyethyl Methacrylate) Composite Conduitfor Peripheral Nerve Repair
Arslantunalı, Damla; Arslantunalı Şahin, Damla; Department of Biotechnology (2012)
There are different methods used in the surgical treatment of peripheral nerve injury. In this respect, end-to-end surgical reconnection of the damaged nerve ends or autologous nerve grafts are applied as soon as possible after the injury. When autologous tissue transplant is considered, there are some medical devices available generally for relatively short nerve defects. As a solution for this problem, different tissue engineered nerve conduits have been developed. In the current study, a pHEMA hydrogel m...
Realization of virtual fluid environment on a robotic gait trainer for therapeutic purposes
Ertop, Tayfun Efe; Konukseven, Erhan İlhan; Koku, Ahmet Buğra; Department of Mechanical Engineering (2017)
Patients with disorders such as spinal cord injury, cerebral palsy and stroke can perform full gait when assisted, which progressively helps them regain the ability to walk. A very common way to create assistive effects is aquatic therapy. Aquatic environment also creates resistive effects desired for increasing muscle activity. Simulating the fluid environment using a robotic system would enable therapists to adjust various fluid parameters so that the therapy is tailored to each patient’s unique state. In...
Peripheral nerve conduits: Technology update
Hasırcı, Nesrin; Arslantunalı Şahin, Damla; Hasırcı, Vasıf Nejat (2014-12-01)
Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allograf...
Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering
Fathi-Achachelouei, Milad; Keskin, Dilek; Bat, Erhan; Vrana, Nihal E.; Tezcaner, Ayşen (Wiley, 2020-07-01)
Degeneration of articular cartilage due to damages, diseases, or age-related factors can significantly decrease the mobility of the patients. Various tissue engineering approaches which take advantage of stem cells and growth factors in a three-dimensional constructs have been used for reconstructing articular tissue. Proliferative impact of basic fibroblast growth factor (bFGF) and chondrogenic differentiation effect of transforming growth factor-beta 1 (TGF-beta 1) over mesenchymal stem cells have previou...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Yucel, G. T. Kose, and V. N. Hasırcı, “Tissue Engineered, Guided Nerve Tube Consisting of Aligned Neural Stem Cells and Astrocytes,”
BIOMACROMOLECULES
, pp. 3584–3591, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32597.