Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways.

2017-02-22
KHURANA, V
PENG, J
CHUNG, CY
AULUCK, PK
FANNING, S
TARDIFF, DF
BARTELS, T
KOEVA, M
EICHHORN, SW
BENYAMINI, H
LOU, Y
NUTTER-UPHAM, A
BARU, V
FREYZON, Y
Tunçbağ, Nurcan
COSTANZO, M
San, Luis
SCHÖNDORF, DC
BARRASA, MI
EHSANI, S
SANJANA, N
ZHONG, Q
GASSER, T
BARTEL, DP
VIDAL, M
DELEIDI, M
BOONE, C
FRAENKEL, E
BERGER, B
LINDQUIST, S
Numerous genes and molecular pathways are implicated in neurodegenerative proteinopathies, but their inter-relationships are poorly understood. We systematically mapped molecular pathways underlying the toxicity of alpha-synuclein (alpha-syn), a protein central to Parkinson's disease. Genome-wide screens in yeast identified 332 genes that impact alpha-syn toxicity. To "humanize'' this molecular network, we developed a computational method, Transpose Net. This integrates a Steiner prize-collecting approach with homology assignment through sequence, structure, and interaction topology. TransposeNet linked a-syn to multiple parkinsonism genes and druggable targets through perturbed protein trafficking and ER quality control as well as mRNA metabolism and translation. A calcium signaling hub linked these processes to perturbed mitochondrial quality control and function, metal ion transport, transcriptional regulation, and signal transduction. Parkinsonism gene interaction profiles spatially opposed in the network (ATP13A2/PARK9 and VPS35/PARK17) were highly distinct, and network relationships for specific genes (LRRK2/PARK8, ATXN2, and EIF4G1/PARK18) were confirmed in patient induced pluripotent stem cell (iPSC)-derived neurons. This cross-species platform connected diverse neurodegenerative genes to proteinopathy through specific mechanisms and may facilitate patient stratification for targeted therapy.

Suggestions

RNA-biology ruling cancer progression? Focus on 3 ' UTRs and splicing
Erson Bensan, Ayşe Elif (Springer Science and Business Media LLC, 2020-09-01)
The protein-coding regions of mRNAs have the information to make proteins and hence have been at the center of attention for understanding altered protein functions in disease states, including cancer. Indeed, the discovery of genomic alterations and driver mutations that change protein levels and/or activity has been pivotal in our understanding of cancer biology. However, to better understand complex molecular mechanisms that are deregulated in cancers, we also need to look at non-coding parts of mRNAs, i...
Biological properties of extracellular vesicles and their physiological functions
Yanez-Mo, Maria; et. al. (2015-01-01)
In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance ...
Inference of Gene Regulatory Networks Via Multiple Data Sources and a Recommendation Method
Ozsoy, Makbule Gulcin; Polat, Faruk; Alhajj, Reda (2015-11-12)
Gene regulatory networks (GRNs) are composed of biological components, including genes, proteins and metabolites, and their interactions. In general, computational methods are used to infer the connections among these components. However, computational methods should take into account the general features of the GRNs, which are sparseness, scale-free topology, modularity and structure of the inferred networks. In this work, observing the common aspects between recommendation systems and GRNs, we decided to ...
Investigating the role of RNA-binding proteins (RBPS) in explaining differential gene expression in cancer
Lafzi, Atefeh; Aydın Son, Yeşim; Kazan, Hilal; Department of Bioinformatics (2016)
Most of the studies on cancer have tried to explain the observed differential gene expression considering only transcriptional regulation. However, post-transcriptional regulation (PTR) has been increasingly recognized as a complex mechanism that also controls various steps of gene expression regulation. Post-transcritional regulation is governed by the interactions of RNA-binding proteins (RBPs) and microRNAs (miRNAs) with their target genes. In this thesis, having found that several RBPs are differentiall...
Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells
Karadas, Ozge; Yucel, Deniz; Kenar, Halime; Kose, Gamze Torun; Hasırcı, Vasıf Nejat (2014-07-01)
The aim of this research was to investigate the osteogenic differentiation potential of non-invasively obtained human stem cells on collagen nanocomposite scaffolds with in situ-grown calcium phosphate crystals. The foams had 70% porosity and pore sizes varying in the range 50-200 mu m. The elastic modulus and compressive strength of the calcium phosphate containing collagen scaffolds were determined to be 234.5 kPa and 127.1 kPa, respectively, prior to in vitro studies. Mesenchymal stem cells (MSCs) obtain...
Citation Formats
V. KHURANA et al., “Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways.,” Cell systems, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32621.