Aptamer-enabled uptake of small molecule ligands

Auwardt, Supipi Liyamali
Seo, Yeon-Jung
İlgü, Müslüm
Ray, Judhajeet
Feldges, Robert R.
Shubham, Shambhavi
Bendickson, Lee
Levine, Howard A.
Nilsen-Hamilton, Marit
The relative ease of isolating aptamers with high specificity for target molecules suggests that molecular recognition may be common in the folds of natural RNAs. We show here that, when expressed in cells, aptamers can increase the intracellular concentrations of their small molecule ligands. We have named these aptamers as DRAGINs (Drug Binding Aptamers for Growing Intracellular Numbers). The DRAGIN property, assessed here by the ability to enhance the toxicity of their ligands, was found for some, but not all, aminoglycoside aptamers. One aptamer protected cells against killing by its ligand. Another aptamer promoted killing as a singlemer and protected against killing as a tandemer. Based on a mathematical model, cell protection vs. killing is proposed as governed by aptamer affinity and access to the inner surface of the cell membrane, with the latter being a critical determinant. With RNA molecules proposed as the earliest functional polymers to drive the evolution of life, we suggest that RNA aptamer-like structures present in primitive cells might have selectively concentrated precursors for polymer synthesis. Riboswitches may be the evolved forms of these ancient aptamer-like "nutrient procurers". Aptamers with DRAGIN capability in the modern world could be applied for imaging cells, in synthetic cell constructs, or to draw drugs into cells to make "undruggable" targets accessible to small molecule inhibitors.


Comparing Clustering Techniques for Real Microarray Data
Purutçuoğlu Gazi, Vilda (2012-08-29)
The clustering of genes detected as significant or differentially expressed provides useful information to biologists about functions and functional relationship of genes. There are variant types of clustering methods that can be applied in genomic data. These are mainly divided into the two groups, namely, hierarchical and partitional methods. In this paper, as the novelty, we perform a detailed clustering analysis for the recently collected boron microarray dataset to investigate biologically more interes...
Differential activation of immune cells by commensal versus pathogen-derived bacterial RNA
Özcan, Mine; Gürsel, Mayda; Department of Biology (2014)
Immunological mechanisms contributing to distinguishing signals derived from commensal versus pathogenic bacteria is an active area of research and recent evidence suggests that commensal and pathogens may express different variants of pathogen associated molecular patterns (PAMP). In this thesis, we propose that as a major member of PAMP, bacterial RNAs derived from commensal and pathogens may have distinct immunostimulatory activities due to differentially recognition by the host immune system. In order t...
Immune modulatory effects of pediococcus pentosaceus derived membrane vesicles: mechanism of action and therapeutic applications
Alpdündar Bulut, Esin; Gürsel, Mayda; Department of Biology (2018)
In our previous studies, we characterized 5 different human gram positive commensal bacteria derived membrane vesicles (MVs) and compared their activity with non-pathogenic E.coli derived membrane vesicles. Results showed that commensal bacteria derived MVs had immunomodulatory properties whereas non-pathogenic E.coli derived membrane vesicles had immune stimulatory properties. In this thesis, we aimed to focus our attention to Pediococcus pentosaceus-derived MVs that displayed the highest immunomodulatory ...
Integer linear programming based solutions for construction of biological networks
Eren Özsoy, Öykü; Can, Tolga; Department of Health Informatics (2014)
Inference of gene regulatory or signaling networks from perturbation experiments and gene expression assays is one of the challenging problems in bioinformatics. Recently, the inference problem has been formulated as a reference network editing problem and it has been show that finding the minimum number of edit operations on a reference network in order to comply with perturbation experiments is an NP-complete problem. In this dissertation, we propose linear programming based solutions for reconstruction o...
Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways.
KHURANA, V; et. al. (2017-02-22)
Numerous genes and molecular pathways are implicated in neurodegenerative proteinopathies, but their inter-relationships are poorly understood. We systematically mapped molecular pathways underlying the toxicity of alpha-synuclein (alpha-syn), a protein central to Parkinson's disease. Genome-wide screens in yeast identified 332 genes that impact alpha-syn toxicity. To "humanize'' this molecular network, we developed a computational method, Transpose Net. This integrates a Steiner prize-collecting approach w...
Citation Formats
S. L. Auwardt et al., “Aptamer-enabled uptake of small molecule ligands,” SCIENTIFIC REPORTS, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42638.