Self-organized flocking in mobile robot swarms

2008-09-01
In this paper, we study self-organized flocking in a swarm of mobile robots. We present Kobot, a mobile robot platform developed specifically for swarm robotic studies. We describe its infrared-based short range sensing system, capable of measuring the distance from obstacles and detecting kin robots, and a novel sensing system called the virtual heading system (VHS) which uses a digital compass and a wireless communication module for sensing the relative headings of neighboring robots. We propose a behavior based on heading alignment and proximal control that is capable of generating self-organized flocking in a swarm of Kobots. By self-organized flocking we mean that a swarm of mobile robots, initially connected via proximal sensing, is able to wander in an environment by moving as a coherent group in open space and to avoid obstacles as if it were a “super-organism”. We propose a number of metrics to evaluate the quality of flocking. We use a default set of behavioral parameter values that can generate acceptable flocking in robots, and analyze the sensitivity of the flocking behavior against changes in each of the parameters using the metrics that were proposed. We show that the proposed behavior can generate flocking in a small group of physical robots in a closed arena as well as in a swarm of 1000 simulated robots in open space. We vary the three main characteristics of the VHS, namely: (1) the amount and nature of noise in the measurement of heading, (2) the number of VHS neighbors, and (3) the range of wireless communication. Our experiments show that the range of communication is the main factor that determines the maximum number of robots that can flock together and that the behavior is highly robust against the other two VHS characteristics. We conclude by discussing this result in the light of related theoretical studies in statistical physics.
Swarm Intelligence

Suggestions

Self-organized flocking with a mobile robot swarm
Turgut, Ali Emre; Gökçe, Fatih; Şahin, Erol ( International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS); 2008-01-01)
This paper studies self-organized flocking in a swarm of mo- bile robots. We present Kobot, a mobile robot platform developed specifically for swarm robotic studies, briefly de- scribing its sensing and communication abilities. In particular, we describe a scalable method that allows the robots to sense the orientations of their neighbors using a digital compass and wireless communication. Then we propose a behavior for a swarm of robots that creates self-organized flocking by using heading alignment and pr...
Self-organized flocking with a mobile robot swarm
Turgut, Ali Emre; Koku, Ahmet Buğra; Department of Mechanical Engineering (2008)
In this thesis, we study self-organized flocking using a swarm of mobile robots. We first present a mobile robot platform having two novel sensing systems developed specifically for swarm robotic studies. We describe its infrared-based short-range sensing system, capable of measuring the range to obstacles and detecting kin robots. In particular, we describe a novel sensing system called the virtual heading sensor (VHS), which combines a digital compass and a wireless communication module to form a scalable...
Perpetual Robot Swarm: Long-Term Autonomy of Mobile Robots Using On-the-fly Inductive Charging
Arvin, Farshad; Watson, Simon; Turgut, Ali Emre; Espinosa, Jose; Krajnik, Tomas; Lennox, Barry (2018-12-01)
Swarm robotics studies the intelligent collective behaviour emerging from long-term interactions of large number of simple robots. However, maintaining a large number of robots operational for long time periods requires significant battery capacity, which is an issue for small robots. Therefore, re-charging systems such as automated battery-swapping stations have been implemented. These systems require that the robots interrupt, albeit shortly, their activity, which influences the swarm behaviour. In this p...
DEVELOPMENT OF A SOCIAL REINFORCEMENT LEARNING BASED AGGREGATION METHOD WITH A MOBILE ROBOT SWARM
Gür, Emre; Turgut, Ali Emre; Şahin, Erol; Department of Mechanical Engineering (2022-9-09)
In this thesis, the development of a social, reinforcement learning-based aggregation method is covered together with the development of a mobile robot swarm of Kobot- Tracked (Kobot-T) robots. The proposed method is developed to improve efficiency in low robot density swarm environments especially when the aggregated area is difficult to find. The method is called Social Reinforcement Learning, and Landmark-Based Aggregation (SRLA) and it is based on Q learning. In this method, robots share their Q tables ...
GESwarm Grammatical Evolution for the Automatic Synthesis of Collective Behaviors in Swarm Robotics
Ferrante, Eliseo; Turgut, Ali Emre; DuenezGuzman, Edgar; Wenseleers, Tom (2013-07-10)
In this paper we propose GESwarm, a novel tool that can automatically synthesize collective behaviors for swarms of autonomous robots through evolutionary robotics. Evolutionary robotics typically relies on artificial evolution for tuning the weights of an artificial neural network that is then used as individual behavior representation. The main caveat of neural networks is that they are very difficult to reverse engineer, meaning that once a suitable solution is found, it is very difficult to analyze, to ...
Citation Formats
A. E. Turgut, F. Gökçe, and E. Şahin, “Self-organized flocking in mobile robot swarms,” Swarm Intelligence, pp. 97–120, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32853.