Self-organized flocking with a mobile robot swarm

2008-01-01
This paper studies self-organized flocking in a swarm of mo- bile robots. We present Kobot, a mobile robot platform developed specifically for swarm robotic studies, briefly de- scribing its sensing and communication abilities. In particular, we describe a scalable method that allows the robots to sense the orientations of their neighbors using a digital compass and wireless communication. Then we propose a behavior for a swarm of robots that creates self-organized flocking by using heading alignment and proximal control. The flocking behavior is observed to operate in three phases: alignment, advance, and avoidance. We evaluate four variants of this behavior by setting its parameters to extreme values and analyze the performance of flocking using a number of metrics, such as order and entropy. Our results show that, the flocking behavior obtained under appropriate parameter values, is quite robust and generates successful self- organized flocking in constraint environments.
7th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ,2-16 May 2008

Suggestions

Self-organized flocking in mobile robot swarms
Turgut, Ali Emre; Gökçe, Fatih; Şahin, Erol (2008-09-01)
In this paper, we study self-organized flocking in a swarm of mobile robots. We present Kobot, a mobile robot platform developed specifically for swarm robotic studies. We describe its infrared-based short range sensing system, capable of measuring the distance from obstacles and detecting kin robots, and a novel sensing system called the virtual heading system (VHS) which uses a digital compass and a wireless communication module for sensing the relative headings of neighboring robots. We propose a behavi...
DEVELOPMENT OF A SOCIAL REINFORCEMENT LEARNING BASED AGGREGATION METHOD WITH A MOBILE ROBOT SWARM
Gür, Emre; Turgut, Ali Emre; Şahin, Erol; Department of Mechanical Engineering (2022-9-09)
In this thesis, the development of a social, reinforcement learning-based aggregation method is covered together with the development of a mobile robot swarm of Kobot- Tracked (Kobot-T) robots. The proposed method is developed to improve efficiency in low robot density swarm environments especially when the aggregated area is difficult to find. The method is called Social Reinforcement Learning, and Landmark-Based Aggregation (SRLA) and it is based on Q learning. In this method, robots share their Q tables ...
Self-organized flocking with a mobile robot swarm
Turgut, Ali Emre; Koku, Ahmet Buğra; Department of Mechanical Engineering (2008)
In this thesis, we study self-organized flocking using a swarm of mobile robots. We first present a mobile robot platform having two novel sensing systems developed specifically for swarm robotic studies. We describe its infrared-based short-range sensing system, capable of measuring the range to obstacles and detecting kin robots. In particular, we describe a novel sensing system called the virtual heading sensor (VHS), which combines a digital compass and a wireless communication module to form a scalable...
A self-organized collective foraging method using a robot swarm
Karagüzel, Tugay Alperen; Turgut, Ali Emre; Department of Mechanical Engineering (2020)
In this thesis, a collective foraging method for a swarm of aerial robots is investigated. The method is constructed by using algorithms that are designed to work in a distributed manner, by using only local information. No member in the swarm has access to global information about positions, states or environment. The environment, that robots are planned to operate in, contains a virtual scalar field which consists of grids containing constant values. The grid values indicate desired regions of the environ...
Self-organised Flocking of Robotic Swarm in Cluttered Environments
Liu, Zheyu; Turgut, Ali Emre; Lennox, Barry; Arvin, Farshad (2021-01-01)
Self-organised flocking behaviour, an emergent collective motion, appears in various physical and biological systems. It has been widely utilised to guide the swarm robotic system in different applications. In this paper, we developed a self-organised flocking mechanism for the homogeneous robotic swarm, which can achieve the collective motion with obstacle avoidance in a cluttered environment. The proposed mechanism introduces an obstacle avoidance approach to the Active Elastic Sheet model that was previo...
Citation Formats
A. E. Turgut, F. Gökçe, and E. Şahin, “Self-organized flocking with a mobile robot swarm,” Estoril; Portugal, 2008, vol. 1, p. 40, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84899967609&origin=inward.