Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Self-organized flocking with a mobile robot swarm
Download
index.pdf
Date
2008
Author
Turgut, Ali Emre
Metadata
Show full item record
Item Usage Stats
219
views
587
downloads
Cite This
In this thesis, we study self-organized flocking using a swarm of mobile robots. We first present a mobile robot platform having two novel sensing systems developed specifically for swarm robotic studies. We describe its infrared-based short-range sensing system, capable of measuring the range to obstacles and detecting kin robots. In particular, we describe a novel sensing system called the virtual heading sensor (VHS), which combines a digital compass and a wireless communication module to form a scalable method for sensing the relative headings of neighboring robots. We propose a behavior based on heading alignment and proximal control and show that it is capable of generating self-organized ocking in a group of seven robots. Then, we propose a number of metrics to evaluate the quality of flocking and use them to evaluate four main variants of this behavior. We characterize and model the sensing abilities of the robots and develop a physics-based simulator that is verified against the physical robots for flocking in open environments. After showing in simulation that we can achieve flocking in a group of up to 1000 robots in an open environment, we perform experiments to determine the performance of flocking under different controller parameters and characteristics of VHS using the predefined metrics. In the experiments, we vary the three main characteristics of VHS, namely: (1) The amount and nature of noise in heading measurement, (2) The number of neighboring robots that can be "heard", and (3) the range of wireless communication. Ourresults show that range of communication is the main factor that determines the scale of flocking, and that the behavior is highly robust against the other two characteristics. We extend an existing particle-based model to determine the phase transition characteristics of flocking under different VHS characteristics. An analytical treatment of the model is also presented and verified against the results obtained from experiments in a physics-based simulator.
Subject Keywords
Mechanical engineering.
,
Automatic machinery.
URI
http://etd.lib.metu.edu.tr/upload/12609462/index.pdf
https://hdl.handle.net/11511/17665
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Self-organized flocking in mobile robot swarms
Turgut, Ali Emre; Gökçe, Fatih; Şahin, Erol (2008-09-01)
In this paper, we study self-organized flocking in a swarm of mobile robots. We present Kobot, a mobile robot platform developed specifically for swarm robotic studies. We describe its infrared-based short range sensing system, capable of measuring the distance from obstacles and detecting kin robots, and a novel sensing system called the virtual heading system (VHS) which uses a digital compass and a wireless communication module for sensing the relative headings of neighboring robots. We propose a behavi...
Design, fabrication and implementation of a vibration based mems energy scavenger for wireless microsystems
Sarı, İbrahim; Balkan, Raif Tuna; Department of Mechanical Engineering (2008)
This thesis study presents the design, simulation, micro fabrication, and testing steps of microelectromechanical systems (MEMS) based electromagnetic micro power generators. These generators are capable of generating power using already available environmental vibrations, by implementing the electromagnetic induction technique. There are mainly two objectives of the study: (i) to increase the bandwidth of the traditional micro generators and (ii) to improve their efficiency at low frequency environmental v...
Self-organized flocking with a mobile robot swarm
Turgut, Ali Emre; Gökçe, Fatih; Şahin, Erol ( International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS); 2008-01-01)
This paper studies self-organized flocking in a swarm of mo- bile robots. We present Kobot, a mobile robot platform developed specifically for swarm robotic studies, briefly de- scribing its sensing and communication abilities. In particular, we describe a scalable method that allows the robots to sense the orientations of their neighbors using a digital compass and wireless communication. Then we propose a behavior for a swarm of robots that creates self-organized flocking by using heading alignment and pr...
3-D humanoid gait simulation using an optimal predictive control
Özyurt, Gökhan; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2005)
In this thesis, the walking of a humanoid system is simulated applying an optimal predictive control algorithm. The simulation is built using Matlab and Simulink softwares. Four separate physical models are developed to represent the single support and the double support phases of a full gait cycle. The models are three dimensional and their properties are analogous to the human̕s. In this connection, the foot models in the double support phases include an additional joint which connects the toe to the foot...
Simulation of motion of an underwater vehicle
Geridönmez, Fatih; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2007)
In this thesis, a simulation package for the Six Degrees of Freedom (6DOF) motion of an underwater vehicle is developed. Mathematical modeling of an underwater vehicle is done and the parameters needed to write such a simulation package are obtained from an existing underwater vehicle available in the literature. Basic equations of motion are developed to simulate the motion of the underwater vehicle and the parameters needed for the hydrodynamic modeling of the vehicle is obtained from the available litera...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. E. Turgut, “Self-organized flocking with a mobile robot swarm,” Ph.D. - Doctoral Program, Middle East Technical University, 2008.