On modelling of microwave heating of a ceramic material

Rafatov, İsmail
A simple model is proposed and tested for simulations of ceramic processing by microwave heating. The model is based on a piecewise constant approximation of the material properties and makes it possible to separate and analyse different effects caused by the sample shape and the dependence of the material properties on temperature. Specifically, the simulation results demonstrate that microwave heating of an alumina sample can be very sensitive to a variation of its dielectric constant with temperature. For different geometries, there is a similarity in the dependences of the thermal state characteristics ( temperature drop across the sample, amount of dissipated power and electric field amplitude at the sample centre) on maximal temperature. It is shown also that a temperature drop between the sample centre and surface can be strongly enhanced in the case of a spherical sample irradiated symmetrically by microwaves.


Numerical methodology for feasibility analysis of ground source heat pumps
Gamage, Kumudu Janani; Uzgören, Eray; Sustainable Environment and Energy Systems (2014-8)
Ground source heat pump (GSHP) systems provide an alternative energy source for residential and commercial space heating and cooling applications by utilizing the favorable temperature profile at a certain depth under the ground surface. GSHP’s aftereffects on the ground temperature profile need to be considered for estimating the economical breakeven point. The present study develops a new semi-analytical model to analyze the short term response of the ground heat exchangers by accounting the depth depende...
Dynamic response of antisymmetric cross-ply laminated composite beams with arbitrary boundary conditions
Khdeir, AA (1996-01-01)
An analytical solution of the classical, first- and third-order laminate beam theories is developed to study the transient response of antisymmetric cross-ply laminated beams with generalized boundary conditions and for arbitrary loadings. A general modal approach, utilizing the state form of the equations of motion and their biorthogonal eigenfunctions, is presented to solve the equations of motion of beams with arbitrary boundary conditions. The results obtained using the higher-order theory of Reddy (HOB...
Electromagnetic energy harvesting and density sensor application based on perfect metamaterial absorber
Bakir, Mehmet; KARAASLAN, MUHARREM; Dincer, Furkan; Akgol, Oguzhan; Sabah, Cumali (World Scientific Pub Co Pte Lt, 2016-08-10)
The proposed study presents an electromagnetic (EM) energy harvesting and density sensor application based on a perfect metamaterial absorber (MA) in microwave frequency regime. In order to verify the absorption behavior of the structure, its absorption behavior is experimentally tested along with the energy harvesting and sensing abilities. The absorption value is experimentally found 0.9 at the resonance frequency of 4.75 GHz. In order to harvest the EM energy, chips resistors are used. In addition, the s...
Temperature estimation of switched reluctance machines using thermal impulse response technique
Rahman, Nasim Arbab; Gu, Lei; Bostancı, Emine; Fahimi, Babak (2017-01-12)
Identifying the hot spots in an electrical machine is a critical step in the electromagnetic design process. Failure of this diagnosis can result in significant damages to the machine. However, a detailed thermal analysis of an electric machine can be extremely time consuming. Therefore, a new approach called Thermal Impulse Response (TIR) modelling is proposed to estimate the temperature of various parts in an electric machine. Use of TIR modelling will improve the simulation time significantly. Simulation...
Numerical investigation of bubbling fluidized bed to be used as high temperature thermal energy storage
Hiçdurmaz, Serdar; Tarı, İlker; Department of Mechanical Engineering (2017)
A thermal energy storage unit designed to be used in a solid particle concentrated solar energy system is analysed with the help of a commercial Computational Fluid Dynamics tool. Hydrodynamics of the bubbling fluidized sand bed of which dimensions are 0.28 m x 1 m x 0.025 m to be used as direct contact heat exchanger are modelled and validated. Geldart B type particles with diameter of 275 micron and density of 2500 kg/m3 are used in modelling of bubbling fludized sand bed. Syamlal O’Brien drag model with ...
Citation Formats
P. V. KOZLOV, İ. Rafatov, E. B. KULUMBAEV, and V. M. LELEVKIN, “On modelling of microwave heating of a ceramic material,” JOURNAL OF PHYSICS D-APPLIED PHYSICS, pp. 2927–2935, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32880.