Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Temperature estimation of switched reluctance machines using thermal impulse response technique
Date
2017-01-12
Author
Rahman, Nasim Arbab
Gu, Lei
Bostancı, Emine
Fahimi, Babak
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
157
views
0
downloads
Cite This
Identifying the hot spots in an electrical machine is a critical step in the electromagnetic design process. Failure of this diagnosis can result in significant damages to the machine. However, a detailed thermal analysis of an electric machine can be extremely time consuming. Therefore, a new approach called Thermal Impulse Response (TIR) modelling is proposed to estimate the temperature of various parts in an electric machine. Use of TIR modelling will improve the simulation time significantly. Simulation and experimental results are carried to support the proposed method.
Subject Keywords
Switched reluctance machine
,
Temperature distribution
,
Thermal impulse response (TIR) technique
,
Thermal analysis
URI
https://hdl.handle.net/11511/36369
DOI
https://doi.org/10.1109/cefc.2016.7816079
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
On modelling of microwave heating of a ceramic material
KOZLOV, P. V.; Rafatov, İsmail; KULUMBAEV, E. B.; LELEVKIN, V. M. (2007-05-07)
A simple model is proposed and tested for simulations of ceramic processing by microwave heating. The model is based on a piecewise constant approximation of the material properties and makes it possible to separate and analyse different effects caused by the sample shape and the dependence of the material properties on temperature. Specifically, the simulation results demonstrate that microwave heating of an alumina sample can be very sensitive to a variation of its dielectric constant with temperature. Fo...
Fault Identification of Rotating Electric Machines using Comparative Analysis Methods
Balan, H.; Vadan, I.; Buzdugan, M.; Botezan, A.; Karaissas, P. (2011-09-10)
The analysis of the electrical machines operation, usually appeals to monitoring and diagnosis techniques, the operation faults involving electrical, mechanical and aero-dynamical parameters modification. The mechanical faults are due mainly to the unbalance of the rotating parts of the electrical machines and their analysis can be carried out using the vibration amplitude versus time and/or the vibration speed versus frequency characteristics. This paper presents a fault identification method, using a comp...
Active vibration suppression of a smart beam via self sensing piezoelectric actuator
Uğur, Arıdoğan; Şahin, Melin; Yaman, Yavuz; Volkan, Nalbantoğlu (null; 2009-08-17)
In this paper, an active vibration suppression of a smart beam using self-sensing piezoelectric actuator is presented. The smart beam is composed of a cantilever aluminium beam with four surface-bonded piezoelectric patches symmetrically located both side of the beam. Piezoelectric materials can transform mechanical deformation to electric signal and vice versa. This property of piezoelectric materials enables them to be used as an actuator and a sensor. In self-sensing actuator configuration, the piezoelec...
Gradient-based optimization of micro-scale pressurized volumetric receiver geometry and flow rate
Akba, Tufan; Baker, Derek Keıth; Mengüç, M. Pınar (2023-02-01)
This study focuses on the design optimization of a micro-scale pressurized volumetric receiver by changing geometry and flow rate constrained by the volume, outlet air temperature, and outer surface temperature. The pressurized volumetric receiver model is replicated from an existing model, which assumes constant air pressure and neglects the convection loss from the cavity. The existing model is revised from a solver to a design optimizer. The replicated model is restructured using OpenMDAO (Open-source Mu...
Time resolved Fabry-Perot measurements of cavity temperature in pulsed QCLs
Gundogdu, S.; Pisheh, H. S.; Demir, A.; Gunoven, M.; Aydinli, A.; Sirtori, C. (The Optical Society, 2018-3-5)
Temperature rise during operation is a central concern of semiconductor lasers and especially difficult to measure during a pulsed operation. We present a technique for in situ time-resolved temperature measurement of quantum cascade lasers operating in a pulsed mode at similar to 9.25 mu m emission wavelength. Using a step-scan approach with 5 ns resolution, we measure the temporal evolution of the spectral density, observing longitudinal Fabry-Perot modes that correspond to different transverse modes. Con...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. A. Rahman, L. Gu, E. Bostancı, and B. Fahimi, “Temperature estimation of switched reluctance machines using thermal impulse response technique,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36369.