Shape Optimization of Reentry Vehicles to Minimize Heat Loading

2019-07-01
Eyi, Sinan
Hanquist, Kyle M.
Boyd, Iain D.
The objective of the current study is to design an optimum reentry vehicle shape that minimizes heat loading subject to constraints on the maximum values of surface heat flux and temperature. A new heat loading formulation is developed for objective function evaluations. Axisymmetric Navier-Stokes and finite-rate chemical reaction equations are solved to evaluate the objective and constraint functions. The Menter SST turbulence model is employed for turbulence closure. A gradient-based method is used for optimization. The sensitivities of the objective and constraint functions are evaluated using the finite-difference method. In shape optimization, the geometry change or the geometry itself is parameterized using different numbers of nonuniform rational basis spline (NURBS) or Bezier curves. Designs are performed at different trajectory points of the IRV-2 vehicle. The effects of flight path angle and reentry velocity on the heat transfer and trajectory characteristics of the original and designed geometries are quantified.
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER

Suggestions

Shape Optimization of Reentry Vehicles to Minimize Heat Loading
Eyi, Sinan; Boyd, I D (2019-01-06)
The objective of the current study is to design an optimum reentry vehicle shape that minimizes heat loading subject to constraints on the maximum values of surface heat flux and temperature. A new heat loading formulation is developed for objective function evaluations. Axisymmetric Navier-Stokes and finite-rate chemical reaction equations are solved to evaluate the objective and constraint functions. The Menter SST turbulence model is employed for turbulence closure. A gradient-based method is used for op...
Numerical simulation and analytical optimization of microchannel heat sinks
Türkakar, Göker; Okutucu Özyurt, Hanife Tuba; Department of Mechanical Engineering (2010)
This study has two main objectives: The performance evaluation of existing microchannel heat sinks using a CFD model, and the dimensional optimization of various heat sinks by minimizing the total thermal resistance. For the analyses, the geometric modeling is performed using the software GAMBIT while the thermal analysis is performed with FLUENT. The developed model compares very well with those available in the literature. Eight different metal-polymer microchannel heat sinks are analyzed using the model ...
Gradient-based optimization of micro-scale pressurized volumetric receiver geometry and flow rate
Akba, Tufan; Baker, Derek Keıth; Mengüç, M. Pınar (2023-02-01)
This study focuses on the design optimization of a micro-scale pressurized volumetric receiver by changing geometry and flow rate constrained by the volume, outlet air temperature, and outer surface temperature. The pressurized volumetric receiver model is replicated from an existing model, which assumes constant air pressure and neglects the convection loss from the cavity. The existing model is revised from a solver to a design optimizer. The replicated model is restructured using OpenMDAO (Open-source Mu...
Ablation modeling of thermal protection systems of blunt-nosed bodies at supersonic flight speeds
Şimşek, Buğra; Yüncü, Hafit; Department of Mechanical Engineering (2013)
The objective of this thesis is to predict shape change due to ablation and to find temperature distribution of the thermal protection system of a supersonic vehicle under aerodynamic heating by using finite element method. A subliming ablative is used as thermal protection material. Required material properties for the ablation analyses are found by using DSC (Differential Scanning Calorimetry) and TGA (Thermogravimetric Analysis) thermal analysis techniques. DSC is a thermal analysis technique that looks ...
NUMERICAL ANALYSIS OF CONVECTIVE HEAT TRANSFER OF NANOFLUIDS FOR LAMINAR FLOW IN A CIRCULAR TUBE
Kirez, Oguz; Güvenç Yazıcıoğlu, Almıla; KAKAÇ, SADIK (2012-11-15)
In this study, a numerical analysis of heat transfer enhancement of Alumina/water nanofluid in a steady-state, single-phase, laminar flow in a circular duct is presented for the case of constant wall heat flux and constant wall temperature boundary conditions. The analysis is performed with a newly suggested model (Corcione) for effective thermal conductivity and viscosity, which show the effects of temperature and nanoparticle diameter. The results for Nusselt number and heat transfer enhancement are prese...
Citation Formats
S. Eyi, K. M. Hanquist, and I. D. Boyd, “Shape Optimization of Reentry Vehicles to Minimize Heat Loading,” JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, pp. 785–796, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32918.