Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Comparative Study of Capacitive and Inductive Pulsed Power Supply Topologies for Electromagnetic Launcher Applications
Date
2019-01-01
Author
Ceylan, Doga
Pourkeivannour, Siamak
Keysan, Ozan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
223
views
0
downloads
Cite This
Inductive and capacitive types are the most common pulsed power supply (PPS) topologies. In this paper, the comparison of inductive XRAM generator and capacitor-based (C-based) generator topologies is discussed for the excitation of an electromagnetic launcher (EML). In addition, the effect of capacitance or inductance of the storage element on the load current and laucher efficiency is investigated. The circuit simulation results of these PPS topologies are presented, each of which having 200 kJ PPS energy. The EML used in the study has 0.1 kg total mass of projectile, 3 m long rail. Although the energy density of the XRAM generators is larger than C-based PPSs, the design of an XRAM generator is more challenging than C-based PPS due to the large voltage drop of its opening switches. Moreover, the efficiency of the total system is highly dependent on the design of the storage element. For the XRAM generator, the efficiency is limited by the capability of the opening switches. In this study, using RC snubber circuit, the voltage stress on the GTO (gate turn-off) thyristor opening switches of the XRAM generator is decreased to 2 kV peak voltage, which is available in the market.
Subject Keywords
Pulsed power generation
,
XRAM generator
,
C-based pulsed power supply
,
Electromagnetic launcher
,
Opening switch
URI
https://hdl.handle.net/11511/33023
DOI
https://doi.org/10.1109/acemp-optim44294.2019.9007196
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A High Performance PWM Algorithm for Common Mode Voltage Reduction in Three-phase Voltage Source Inverters
Uen, Emre; Hava, Ahmet Masum (2008-06-19)
A high performance PWM algorithm with reduced common mode voltage (CMV) and satisfactory overall performance is proposed for three-phase PWM inverter drives. The algorithm combines the near state PWM (NSPWM) method which has superior overall performance characteristics at high modulation index and MAZSPWM, a modified form of the active zero state PWM method (AZSPWM1), which is suitable for low modulation index range of operation. Since AZSPWM1 has line-to-line voltage pulse reversals with small zero-voltage...
A CMOS High Frequency Pulse Width Modulation Integrated Circuit
Sahin, Osman Ulas; Kocer, Fatih (2016-08-05)
In this work, a high frequency pulse width modulation (PWM) integrated circuit (IC) designed and implemented in a commercial 0.35 mu m CMOS process is presented. Based on natural sampling method, the proposed PWM IC can generate both a PWM signal and its inverse for arbitrary frequencies up to 5 MHz. The PWM frequency can he adjusted via an external clock and an off-chip capacitor. The duty cycle of the PWM signal can be linearly varied from 5% to 95% by changing the input signal. Thanks to its analog trian...
A Self-Powered and Efficient Rectifier for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2014-11-05)
This paper presents an interface circuit for efficient rectification of voltages from electromagnetic (EM) energy harvesters operating with very low vibration frequencies. The interface utilizes a dual-rail AC/DC doubler which benefits from the full cycle of the input AC voltage, and minimizes the forward bias voltage drop with an active diode structure. The active diodes are powered through an AC/DC quadrupler with diode connected (passive) transistors. The interface system has been validated to drive 22 m...
A DC Bus Capacitor Design Method for Various Inverter Applications
Hava, Ahmet Masum; Aban, Vahap Volkan (2012-09-20)
This paper involves the selection and sizing of the appropriate type of dc bus capacitor for various applications utilizing PWM operated three-phase voltage source inverters, such as battery operated systems, PV (photovoltaic) systems, UPSs, and motor drives. It classifies the power converter topologies based on dc bus ripple current frequency characteristics. A general approach for ripple current characterization is provided. Based on these characteristics, the two capacitor types suitable for this purpose...
A Comprehensive study on RF energy harvesters: modelling, design, and implementation
Gharehbaghi, Kaveh; Külah, Haluk; Koçer, Fatih; Department of Electrical and Electronics Engineering (2016)
The Dickson and the threshold self-compensated UHF rectifier architectures are investigated in detail. At first, the Dickson architecture is studied by aiming to find an accurate yet general input-output relationship. It is revealed that the ratio of peak forward current over the load current could be well approximated for broad range of incoming RF amplitudes. For threshold self-compensated UHF rectifiers, a behavioral model is presented for core unit of the structure to ease the analytical discussions. Th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Ceylan, S. Pourkeivannour, and O. Keysan, “A Comparative Study of Capacitive and Inductive Pulsed Power Supply Topologies for Electromagnetic Launcher Applications,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33023.