Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Preconditioned MLFMA Solution of Multiple Dielectric-Metallic Composite Objects with the Electric and Magnetic Current Combined-Field Integral Equation (JMCFIE)
Download
index.pdf
Date
2009-06-05
Author
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
148
views
0
downloads
Cite This
We consider fast and accurate solutions of scattering problems involving multiple dielectric and composite dielectric-metallic structures with three-dimensional arbitrary shapes. Problems are formulated rigorously with the electric and magnetic current combined-field integral equation (JMCFIE), which produces well-conditioned matrix equations. Equivalent electric and magnetic surface currents are discretized by using the Rao-Wilton-Glisson (RWG) functions defined on planar triangles. Matrix equations obtained with JMCFIE are solved iteratively by employing a Krylov subspace algorithm, where the required matrix- vector multiplications are performed efficiently with the multilevel fast multipole algorithm (MLFMA). We also present a four-partition block-diagonal preconditioner (4PBDP), which provides efficient solutions of JMCFIE by reducing the number of iterations significantly. The resulting implementation based on JMCFIE, MLFMA, and 4PBDP is tested on large electromagnetics problems.
Subject Keywords
Integral equations
,
Testing
,
Electromagnetic scattering
,
Transmission line matrix methods
,
Influenza
,
MLFMA
,
Dielectric losses
,
Shape
,
Iterative algorithms
,
H infinity control
URI
https://hdl.handle.net/11511/33274
DOI
https://doi.org/10.1109/aps.2009.5172020
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
On the errors arising in surface integral equations due to the discretization of the identity operatort
Ergül, Özgür Salih (2009-06-05)
Surface integral equations (SIEs) are commonly used to formulate scattering and radiation problems involving three-dimensional metallic and homogeneous dielectric objects with arbitrary shapes. For numerical solutions, equivalent electric and/or magnetic currents defined on surfaces are discretized and expanded in a series of basis functions. Then, the boundary conditions are tested on surfaces via a set of testing functions. Solutions of the resulting dense matrix equations provide the expansion coefficien...
Comparison of Integral-Equation Formulations for the Fast and Accurate Solution of Scattering Problems Involving Dielectric Objects with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2009-01-01)
We consider fast and accurate solutions of scattering problems involving increasingly large dielectric objects formulated by surface integral equations. We compare various formulations when the objects are discretized with Rao-Wilton-Glisson functions, and the resulting matrix equations are solved iteratively by employing the multilevel fast multipole algorithm (MLFMA). For large problems, we show that a combined-field formulation, namely, the electric and magnetic current combined-field integral equation (...
A Non-iterative Domain Decomposition Method for Finite Element Analysis of 3D Electromagnetic Scattering Problems
Ozgun, Ozlem; Kuzuoğlu, Mustafa (2008-07-11)
In this paper, we generalize this algorithm to 3D scattering problems, and we demonstrate that the algorithm is actually non-iterative in problems involving smooth convex geometries (such as sphere, cube, missile, cone, plate, etc.) and some special geometries (such as inlet). The most distinguished feature of the algorithm is the utilization of the locally-conformal perfectly matched layer (PML) method along the boundaries of the subdomains. In this algorithm, the original computational domain is partition...
Improving the accuracy of the MFIE with the choice of basis functions
Ergül, Özgür Salih (2004-06-26)
In the method-of-moments (MOM) and the fast-multipole-method (FMM) solutions of the electromagnetic scattering problems modeled by arbitrary planar triangulations, the magnetic-field integral equation (MFIE) can be observed to give less accurate results compared to the electric-field integral equation (EFIE), if the current is expanded with the Rao-Wilton-Glisson (RWG) basis functions. The inaccuracy is more evident for problem geometries with sharp edges or tips. This paper shows that the accuracy of the M...
Fast and accurate solutions of scattering problems involving dielectric objects with moderate and low contrasts
Ergül, Özgür Salih (2007-08-31)
We consider the solution of electromagnetic scattering problems involving relatively large dielectric objects with moderate and low contrasts. Three-dimensional objects are discretized with Rao-Wilton-Glisson functions and the scattering problems are formulated with surface integral equations. The resulting dense matrix equations are solved iteratively by employing the multilevel fast multipole algorithm. We compare the accuracy and efficiency of the results obtained by employing various integral equations ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. S. Ergül, “Preconditioned MLFMA Solution of Multiple Dielectric-Metallic Composite Objects with the Electric and Magnetic Current Combined-Field Integral Equation (JMCFIE),” 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33274.