DYNAMIC ANALYSIS OF HIGH-SPEED GEARS BY USING LOADED STATIC TRANSMISSION ERROR

1988-08-22
A single degree of freedom non-linear model is used for the dynamic analysis of a gear pair. Two methods are suggested and a computer program is developed for calculating the dynamic mesh and tooth forces, dynamic factors based on stresses, and dynamic transmission error from measured or calculated loaded static transmission errors. The analysis includes the effects of variable mesh stiffness and mesh damping, gear errors (pitch, profile and runout errors), profile modifications and backlash. The accuracy of the method, which includes the time variation of both mesh stiffness and damping is demonstrated with numerical examples. In the second method, which is an approximate one, the time average of the mesh stiffness is used. However, the formulation used in the approximate analysis allows for the inclusion of the excitation effect of the variable mesh stiffness. It is concluded from the comparison of the results of the two methods that the displacement excitation resulting from a variable mesh stiffness is more important than the change in system natural frequency resulting from the mesh stiffness variation. Although the theory presented is general and applicable to spur, helical and spiral bevel gears, the computer program prepared is for only spur gears.
JOURNAL OF SOUND AND VIBRATION

Suggestions

Nonlinear dynamics of spiral bevel gear pair
Önal, Birkan; Ciğeroğlu, Ender; Sarıbay, Zihni Burçay; Department of Mechanical Engineering (2018)
Nonlinear dynamics of a generic spiral bevel gear pair used in high speed, high power gearboxes is studied in this thesis. Different tooth ease-off topographies are generated based on real machine settings. Tooth micro geometries are established in order to obtain profile crowning, lengthwise crowning and flank twist topographies. Details of macro and micro geometry and corresponding real machine settings are given in this study. Path of contact, contact stress, directional rotation radius, load share, unlo...
Dynamic signaling games with quadratic criteria under Nash and Stackelberg equilibria
Yuksel, Serdar; Sarıtaş, Serkan; Gezici, Sinan (2020-05-01)
This paper considers dynamic (multi-stage) signaling games involving an encoder and a decoder who have subjective models on the cost functions. We consider both Nash (simultaneous-move) and Stackelberg (leader-follower) equilibria of dynamic signaling games under quadratic criteria. For the multi-stage scalar cheap talk, we show that the final stage equilibrium is always quantized and under further conditions the equilibria for all time stages must be quantized. In contrast, the Stackelberg equilibria are a...
Real-Time Detection of Interharmonics and Harmonics of AC Electric Arc Furnaces on GPU Framework
Uz-Logoglu, Eda; Salor, Ozgul; Ermiş, Muammer (2019-11-01)
In this paper, a method based on the multiple synchronous reference frame analysis is recommended and implemented to detect time-varying harmonics and interharmonics of rapidly fluctuating asymmetrical industrial loads. The experimental work has been carried out on a typical three-phase alternating current arc furnace installation. In the recommended method, the reference frame is rotated in both directions at speeds corresponding to the positive and negative sequences of all harmonics and all interharmonic...
Real-Time Detection of Interharmonics and Harmonics of AC Electric Arc Furnaces on GPU Framework
Uz-Logoglu, Eda; Salor, Ozgul; Ermiş, Muammer (2017-10-05)
In this paper, a method based on the multiple synchronous reference frame (MSRF) analysis is recommended and implemented to detect time-varying harmonics and interharmonics of rapidly fluctuating asymmetrical industrial loads. The experimental work has been carried out on a typical three-phase alternating current arc furnace (AC EAF) installation. In the recommended method, the reference frame is rotated in both directions at speeds corresponding to the positive and negative sequences of all harmonics and a...
DYNAMIC ANALYSIS OF GEARED SHAFT SYSTEMS BY USING A CONTINUOUS SYSTEM MODEL
Şener, Ö Sedat; Özgüven, Hasan Nevzat (Elsevier BV, 1993-09-22)
In this study dynamic mesh forces and dynamic factors in a geared shaft system are studied by using a continuous system model. The system consists of a gear pair, two shafts carrying gears, and two inertias representing drive and load in the system. A continuous system model is used to include the shaft inertias, which are usually disregarded even in most of the sophisticated models. The primary aim of this work is to provide a tool for studying the effect of shaft inertia in gear dynamics, and to present s...
Citation Formats
H. N. Özgüven, “DYNAMIC ANALYSIS OF HIGH-SPEED GEARS BY USING LOADED STATIC TRANSMISSION ERROR,” JOURNAL OF SOUND AND VIBRATION, pp. 71–83, 1988, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33332.