Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
First-principles design of efficient solar cells using two-dimensional arrays of core-shell and layered SiGe nanowires
Date
2011-01-20
Author
Pekoz, R.
Malcıoğlu, Osman Barış
Raty, J. -Y.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
238
views
0
downloads
Cite This
Research for third generation solar cell technology has been driven by the need to overcome the efficiency and cost problems encountered by current crystalline Si- and thin-film-based solar cells. Using first-principles methods, Ge/Si and Si/Ge core/shell and Si-Ge layered nanowires are shown to possess the required qualities for an efficient use in photovoltaic applications. We investigate the details of their band structure, effective mass, absorption property, and charge-carrier localization. The strong charge separation and improved absorption in the visible spectrum indicate a remarkable quantum efficiency that, combined with new designs, compares positively with bulk Si.
Subject Keywords
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/34461
Journal
PHYSICAL REVIEW B
DOI
https://doi.org/10.1103/physrevb.83.035317
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Improving the absorption of solar cells using antenna-inspired cavities
Karaosmanoğlu, Barışcan; Tuygar, Emre; Topçuoğlu, Ulaş; Ergül, Özgür Salih (Wiley, 2019-08-01)
We present new types of nanocavities to improve the absorption of solar cells for energy harvesting in wide frequency ranges of the optical spectrum. Using a full‐wave approach, as opposed to the commonly used ray‐based modeling of the light, antenna‐inspired cavities with horn shapes are proposed and introduced. The effectiveness of the designed cavities is demonstrated in comparison to the conventional textures involving inverted pyramids and nanocones. Highly accurate numerical results show that solar‐ce...
Electrical response of electron selective atomic layer deposited TiO2-x heterocontacts on crystalline silicon substrates
Ahiboz, Doguscan; Nasser, Hisham; Aygun, Ezgi; Bek, Alpan; Turan, Raşit (IOP Publishing, 2018-04-01)
Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2-x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2-x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, p...
Experimental investigation on the electrocatalytic behavior of Ag-based oxides, Ag2XO4 (X= Cr, Mo, W), for the oxygen reduction reaction in alkaline media
Hamat, Burcu Arslan; Aydınol, Mehmet Kadri (Elsevier BV, 2020-10-01)
The oxygen reduction (ORR) is one of the most essential electrochemical reactions for the development of promising energy storage and conservation technologies such as metal-air batteries and fuel cells. The slow kinetics of oxygen reactions; however, limits the use of metal-air batteries and fuel cells in demanding applications. The aim of this study is to investigate the electrochemical activity of Ag-based oxides, Ag2XO4 (where X = Cr, Mo, and W), to be used as a catalyst material in these applications. ...
Third-harmonic generation in a quantum well with adjustable asymmetry under an electric field
Yildirim, H.; Tomak, Mehmet (Wiley, 2006-12-01)
We study third-harmonic generation in a quantum well represented by a Poschl-Teller confining potential under an applied electric field. This potential is well suited for such purposes as it can easily become asymmetrical by a correct choice of its parameter set. We calculate the third harmonic generation within the density matrix formalism. Numerical results for a typical GaAs quantum well are presented. We investigate the third-harmonic generation for several values of asymmetry parameters under small ele...
Low temperature crystallization of amorphous silicon by gold nanoparticle
Karaman, M.; AYDIN, MURAT; Sedani, S. H.; ERTÜRK, KADİR; Turan, Raşit (Elsevier BV, 2013-08-01)
Single crystalline Si thin film fabricated on glass substrate by a process called Solid Phase Crystallization (SPC) is highly desirable for the development of high efficiency and low cost thin film solar cells. However, the use of ordinary soda lime glass requires process temperatures higher than 600 degrees C. Crystallization of Si film at around this temperature takes place in extremely long time exceeding 20 h in most cases. In order to reduce this long process time, new crystallization techniques such a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Pekoz, O. B. Malcıoğlu, and J.-Y. Raty, “First-principles design of efficient solar cells using two-dimensional arrays of core-shell and layered SiGe nanowires,”
PHYSICAL REVIEW B
, pp. 0–0, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34461.