Thermal and dynamic mechanical properties of microwave and heat-cured poly(methyl methacrylate) used as dental base material

1999-12-13
Muhtarogullari, IY
Dogan, A
Muhtarogullari, M
Usanmaz, Ali
In this study, the particle size distribution, molecular weight, thermal analysis (TGA) differential scanning calorimetry (DSC) and thermogravimetric analysis, and dynamic mechanical analysis (DMA) of poly(methyl methacrylate) used as dental base material were investigated. The commercial raw material used were prepared for microwave curing, and they were cured by microwave and conventional heat methods. The average particle size of the powder studied (103.1 mu m) were much larger than that of the commercial powders (50-78 mu m) for conventional curing. The particle size dietribution were almost symmetrical and narrow. The viscosity-average molecular weight were larger for microwave curing and increased with curing time. The glass transition temperature T-g measured (about 110 degrees C) by DSC increased with curing period in microwave oven. The values of T-g were close: to each other for both curing techniques. The degradation temperature range observed by TGA were 200-377 degrees C. The movements of molecular chains in their conformations were studied by DMA in the form of changes in different mechanical properties with temperature. It was shown that crosslinking increased with increase of curing time. The changes were more noticeable in microwave curing compared to conventional heat curing. (C) 1999 John Wiley & Sons, Inc.

Suggestions

Thermal characterization of glycidyl azide polymer (GAP) and GAP-based binders for composite propellants
Selim, K; Özkar, Saim; Yılmaz, Levent (Wiley, 2000-07-18)
Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were used to investigate the thermal behavior of glycidyl azide polymer (GAP) and GAP-based binders, which are of potential interest for the development of high-performance energetic propellants. The glass transition temperature (T-g) and decomposition temperature (T-d) of pure GAP were found to be -45 and 242 degrees C, respectively. The energy released during decomposition (Delta H-d) was measured as 485 cal/g. The effect of th...
Thermal stability and decomposition mechanism of poly(p-acryloyloxybenzoic acid and poly(p-methacryloyloxybenzoic acid) and their graft copolymers with polypropylene, Part II
Cetin, S.; Tincer, T. (Wiley, 2008-04-05)
Thermal stability and decomposition mechanism of poly(p-acryloyloxybenzoic) acid (PABA), p-methacryloyloxybenzoic acid (PMBA), and their graft coproducts of PP were studied by differential scanning calorimetry, direct pyrolysis mass spectrometry, and TG/IR system, combined thermogravimetric analyzer, and FTIR spectrometer. The homopolymers and corresponding grafts were found to be stable in nitrogen atmosphere but started to decompose under atmospheric conditions when heated above 230 degrees C. PABA and PA...
Kinetic study of the reaction between hydroxyl-terminated polybutadiene and isophorone diisocyanate in bulk by quantitative FTIR spectroscopy
Kincal, D; Özkar, Saim (Wiley, 1997-12-05)
A kinetic study of the reaction between a hydroxyl-terminated polybutadiene (HTPB) and isophorone diisocyanate (IPDI) was carried out in the bulk state by using quantitative Fourier transform infrared(FTIR) spectroscopy. The reaction is shown to obey a second-order rate law, being first order in both the HTPB and IPDI concentrations. The activation parameters obtained from the evaluation of kinetic data are Delta H-double dagger = 41.1 +/- 0.4 kJ mol, Delta S-double dagger = -198 +/- 2 J K-1 mol(-1) and E-a...
Thermal and dynamic mechanical properties of gamma-ray-cured poly(methyl methacrylate) used as a dental-base material
Usanmaz, Ali; Eser, O; Dogan, A (Wiley, 2001-08-01)
In this study, gamma rays were used for the first time to cure dental-base material. The effect of the radiation dose on the thermal and theological properties of poly(methyl methacrylate) (PMMA) used as a dental-base material was investigated. The commercial powder and liquid material (heat-curing-grade) were mixed and polymerized at 60 and 70 degreesC in a constant-temperature water bath for 30 min and then were cured by gamma rays, with total doses of 7.5, 15, 22.5, 30, 45, 52.5, 360, and 2160 krad. For ...
Electropolymerization of a New 4-(2,5-Di-2-thiophen-2-yl-pyrrol-1-yl)-Tetra Substituted Nickel Phthalocyanine Derivative
Yavuz, Arzu; Carbas, Buket Bezgin; Aras, Leyla; Önal, Ahmet Muhtar (Wiley, 2011-10-15)
A new tetrakis 4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl) substituted nickel phthalocyanine (NiPc-SNS) was synthesized and characterized by elemental analysis, Fourier Transform Infrared (FT-IR), and UV-vis spectroscopies. The electrochemical polymerization of this newly synthesized NiPc-SNS was performed in dichloromethane (DCM)/tetrabutylammonium perchlorate (TBAP) solvent/electrolyte couple. An insoluble film was deposited on the electrode surface, both during repetitive cycling and constant potential electr...
Citation Formats
I. Muhtarogullari, A. Dogan, M. Muhtarogullari, and A. Usanmaz, “Thermal and dynamic mechanical properties of microwave and heat-cured poly(methyl methacrylate) used as dental base material,” JOURNAL OF APPLIED POLYMER SCIENCE, pp. 2971–2978, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56647.