Reduction of dynamic earth loads on flexible cantilever retaining walls by deformable geofoam panels

2017-01-01
ERTUĞRUL, ÖZGÜR LÜTFİ
Trandafir, Aurelian C.
Özkan, M. Yener
The potential application of geofoam in reducing the dynamic earth forces on flexible cantilever earth retaining walls was investigated through small-scale physical model tests. Tests were carried out using a state-of-the-art laminar container and a uniaxial shaking table. Deformable geofoam panels of low stiffness made from expanded polystyrene (EPS) and extruded polystyrene (XPS) geofoam were utilized as compressible inclusions in the present study. The dynamic stress-strain properties of these geomaterials are discussed based on results from laboratory cyclic triaxial tests. Lateral dynamic earth pressures and wall displacements at different elevations, within the backfill were monitored during the application of various base excitations. The test results revealed that the presence of a deformable geofoain panel of low stiffness behind the flexible retaining wall will result in a reduction of the dynamic wall pressures and displacements. The geofoam efficiency in terms of load and displacement reduction decreases as the flexibility ratio of the model wall increases. On the other hand, load reduction efficiency of the geofoam increases as the amplitude and frequency ratio of the excitation increases. Load reduction efficiencies achieved in the tests were compared to those of the previous physical and numerical modeling studies available in the literature. Comparisons indicate that there is an agreement with the data presented in the previous modeling studies for low acceleration amplitudes and wall flexibility values, however, this agreement diminishes as wall flexibility begins to play role in reducing the earth pressures. Application point of the maximum dynamic thrust varies between 0.4 H to 0.6 H depending on the inclusion type, flexibility ratio of the wall and the characteristics of the harmonic motion applied to the base of the models.
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING

Suggestions

Numerical simulation of dynamic shear wall tests: A benchmark study
Kazaz, I; Yakut, Ahmet; Gulkan, P (2006-03-01)
This article presents the numerical simulation of a 1/3-scale, 5-story reinforced concrete load bearing structural wall model subjected to seismic excitations in the context of IAEA benchmark shaking table experiment conducted in laboratories of CEA in Saclay, France. A series of non-linear time history analyses were performed to simulate the damage experienced and response quantities measured for the specimen tested on a shaking table. The mock-up was subjected to a series of artificial and natural earthqu...
Influence of EPS Geofoam Buffers on the Static Behavior of Cantilever Earth-Retaining Walls
Ertugrul, Ozgur L.; Ozkan, M. Yener (LookUs Bilisim A.S., 2012)
In this study, the effect of expanded polystyrene (EPS) buffers on lateral stresses and deflections of model retaining walls with various flexibility values were investigated. For this purpose, 0.7 m high model walls were instrumented and 1-g model tests were performed in laboratory environment. In the first group of tests, the wall models retain only granular cohesionless backfill whereas in the second and third group of tests, EPS deformable buffers of two different thicknesses were installed between ...
Effect of AAC Infill Walls on Structural System Dynamics of a Concrete Building
Çelik, Ozan Cem (2016-01-01)
The effect of autoclaved aerated concrete (AAC) infill walls on the structural system dynamics of a two-story reinforced concrete building is investigated using its finite element structural model, which is calibrated to simulate the acceleration-frequency response curves from its forced vibration test. The model incorporating the AAC infill walls by equivalent diagonal struts captures the increase in lateral stiffness of the building and the torsional motions induced due to the asymmetrically placed AAC in...
COLLAPSE FRAGILITY ANALYSIS OF REINFORCED CONCRETE TALL BUILDINGS
Budak, Erhan; Çelik, Ozan Cem; Sucuoğlu, Haluk; Department of Civil Engineering (2022-9-02)
Seismic performance of a 253 m tall reinforced concrete core wall building in Istanbul, designed according to performance-based seismic design principles, was assessed to determine the response parameters that control the serviceability, safety and collapse performance limit states. An ambient vibration test of the building was performed to identify its dynamic properties, including the damping properties for service loads. A three- dimensional linear elastic finite element structural model of the building ...
Upgrading of slab-column connections using fiber reinforced polymers
Binici, Barış (Elsevier BV, 2005-01-01)
The results of an experimental program on upgrading of reinforced concrete slab-column connections subjected to monotonic shear and unbalanced moment transfer are presented in this study. Externally installed carbon fiber reinforced polymer (CFRP) stirrups acting as shear reinforcement around the slab-column connection area were used with two patterns of CFRP arrangements. It was found that the proposed method resulted in punching shear capacity increases up to 60% relative to the specimen without any stren...
Citation Formats
Ö. L. ERTUĞRUL, A. C. Trandafir, and M. Y. Özkan, “Reduction of dynamic earth loads on flexible cantilever retaining walls by deformable geofoam panels,” SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, pp. 462–471, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34807.