Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Influence of EPS Geofoam Buffers on the Static Behavior of Cantilever Earth-Retaining Walls
Download
10.5505pajes.2012.09709.pdf
Date
2012
Author
Ertugrul, Ozgur L.
Ozkan, M. Yener
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
153
views
113
downloads
Cite This
In this study, the effect of expanded polystyrene (EPS) buffers on lateral stresses and deflections of model retaining walls with various flexibility values were investigated. For this purpose, 0.7 m high model walls were instrumented and 1-g model tests were performed in laboratory environment. In the first group of tests, the wall models retain only granular cohesionless backfill whereas in the second and third group of tests, EPS deformable buffers of two different thicknesses were installed between the wall and granular backfill. Tests were repeated for four different wall thicknesses and results were discussed comparatively. As wall flexibility increases, there is a decrease in the load reduction pattern of the buffer. On the other hand, utilization of geofoam buffers with flexible cantilever walls still provides substantial decrease in wall thrust and deflections thus leading to more economical retaining structure design. The lateral earth pressure coefficients determined through model tests were compared to those calculated from Coulomb’s theory for active lateral earth stresses. A graph is provided for the estimation of lateral earth pressure coefficients for various combinations of wall flexibilities and buffer characteristics.
Subject Keywords
Cantilever retaining wall
,
Expanded polystyrene (EPS)
,
Deformable buffer
URI
https://hdl.handle.net/11511/51282
Journal
Pamukkale University Journal of Engineering Sciences
DOI
https://doi.org/10.5505/pajes.2012.09709
Collections
Graduate School of Marine Sciences, Article
Suggestions
OpenMETU
Core
Influence of deformable geofoam bufers on the static and dynamic behaviors of cantilever retaining walls
Ertuğrul, Özgür Lütfi; Özkan, M. Yener; Department of Civil Engineering (2011)
Static and dynamic interaction mechanism of the retained soil-compressible geofoam buffer and yielding retaining structures requires further investigation. The present study, initiated on this motive, discusses the results of 1-g physical model tests and numerical analyses of cantilever retaining walls with and without deformable geofoam buffers between the wall and cohesionless granular backfill. 0.7m high walls with various wall thicknesses were utilized in the physical modeling. Dynamic tests were carrie...
Reduction of dynamic earth loads on flexible cantilever retaining walls by deformable geofoam panels
ERTUĞRUL, ÖZGÜR LÜTFİ; Trandafir, Aurelian C.; Özkan, M. Yener (2017-01-01)
The potential application of geofoam in reducing the dynamic earth forces on flexible cantilever earth retaining walls was investigated through small-scale physical model tests. Tests were carried out using a state-of-the-art laminar container and a uniaxial shaking table. Deformable geofoam panels of low stiffness made from expanded polystyrene (EPS) and extruded polystyrene (XPS) geofoam were utilized as compressible inclusions in the present study. The dynamic stress-strain properties of these geomateria...
Effect of shear walls on the behavior of reinforced concrete buildings under earthquake loading
Çömlekoğlu, Hakkı Gürhan; Burak Bakır, Burcu; Department of Civil Engineering (2009)
An analytical study was performed to evaluate the effect of shear wall ratio on the dynamic behavior of mid-rise reinforced concrete structures. The primary aim of this study is to examine the influence of shear wall area to floor area ratio on the dynamic performance of a building. Besides, the effect of shear wall configuration and area of existing columns on the seismic performance of the buildings were also investigated. For this purpose, twenty four mid-rise building models that have five and eight sto...
Effect of Shear Wall Area to Floor Area Ratio on the Seismic Behavior of Reinforced Concrete Buildings
Burak Bakır, Burcu (American Society of Civil Engineers (ASCE), 2013-11-01)
An analytical study is performed to evaluate the effect of shear wall area to floor area ratio on the seismic behavior of midrise RC structures. For this purpose, 24 midrise building models that have five and eight stories and shear wall ratios ranging between 0.51 and 2.17% in both directions are generated. Then, the behavior of these building models under earthquake loading is examined by carrying out nonlinear time history analyses. In the analyses, seven different ground motion records are applied to th...
Effect of Foundation Soil Stiffness on the Seismic Performance of Integral Bridges
Dicleli, Murat (Informa UK Limited, 2011-05-01)
In this study, the effect of foundation soil stiffness on the seismic performance of integral bridges (IBs) is investigated. For this purpose, nonlinear structural models of a two-span TB with four different foundation soil stiffness types (loose, medium, medium-dense and dense sands) are built. In the nonlinear structural models, nonlinear soil structure interaction including free-field effects is considered. Then, the nonlinear time history analyses of the TB models are conducted using a set of ground mot...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. L. Ertugrul and M. Y. Ozkan, “Influence of EPS Geofoam Buffers on the Static Behavior of Cantilever Earth-Retaining Walls,”
Pamukkale University Journal of Engineering Sciences
, pp. 173–181, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/51282.