Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Sea Detection on High-Resolution Panchromatic Satellite Images Using Texture and Intensity
Date
2014-01-01
Author
Besbinar, Beril
Alatan, Abdullah Aydın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
259
views
0
downloads
Cite This
In this paper, a two-stage sea-land mask detection algorithm on high resolution panchromatic images is proposed. An initial mask is generated using texture features in the first stage and this mask is refined by using intensity values in the second stage. Image is divided into windows and the Local Binary Patterns (LBP) histograms, evaluated at each window, are modelled using the sea and land sample spaces obtained by the altitude information which has very low resolution compared to the image. These models are utilized for graph cut segmentation algorithm to generate the initial mask. Output mask is generated by thresholding the geodesic distance to the eroded initial mask, calculated on the enhanced and filtered image. Test results obtained on satellite images showed that the proposed algorithm is capable of detection of sea with a high accuracy rate.
Subject Keywords
Remote sensing
,
High resolution satellite images
,
Panchromatic satellite images
,
Sea detection
URI
https://hdl.handle.net/11511/35075
DOI
https://doi.org/10.1109/siu.2014.6830704
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Building Detection in satellite images by textural features and Adaboost
CETIN, MELIH; Halıcı, Uğur (2010-08-24)
A method based on textural features and Adaboost for detecting buildings in satellite images is proposed. Several local textural features including mean and standard deviation of image intensity and gradient, Zernike moments, Circular-Mellin features, Haralick features, Fourier Power Spectrum, Wavelets, Gabor Filters, and a set features extracted from HSV color space are extracted. Adaboost learning algorithm is employed for both classification and determining the beneficial feature subset, due to its featu...
Automated Detection of Arbitrarily Shaped Buildings in Complex Environments From Monocular VHR Optical Satellite Imagery
Ok, Ali Ozgun; Senaras, Caglar; Yuksel, Baris (2013-03-01)
This paper introduces a new approach for the automated detection of buildings from monocular very high resolution (VHR) optical satellite images. First, we investigate the shadow evidence to focus on building regions. To do that, we propose a new fuzzy landscape generation approach to model the directional spatial relationship between buildings and their shadows. Once all landscapes are collected, a pruning process is developed to eliminate the landscapes that may occur due to non-building objects. The fina...
Geospatial Object Recognition From High Resolution Satellite Imagery
Ergul, Mustafa; Alatan, Abdullah Aydın (2013-01-01)
In this paper, a novel automatic geo-spatial object recognition algorithm from high resolution satellite imagery is proposed. The proposed algorithm consists of two main steps; the generation of hypothesis with a local feature based algorithm and verification step with a shape based approach. The superiority of this method is the ability of minimization of false alarm number in the recognition and this is because object shape includes more characteristic and discriminative information about object identity ...
PROGRESSIVE COMPRESSION OF DIGITAL ELEVATION DATA USING MESHES
Kose, Kivanc; Yılmaz, Erdal; ÇETİN, AHMET ENİS (2009-07-17)
In this paper a new Digital Elevation Map (DEM) image compression algorithm is proposed. DEM image can be threated as a grayscale image, whose pixel values are the elevation values of the map points. The grayscale DEM image is compressed using an adaptive wavelet based image compression algorithm. The method, which is an extension of the progressive mesh compression takes advantage of the multiresolution property of the wavelets while coding the map images. This makes it possible to decode different resolut...
Road network extraction from high-resolution multi spectral satellite images
Karaman, Ersin; Çetin, Yasemin; Department of Information Systems (2012)
In this thesis, an automatic road extraction algorithm for multi-spectral images is developed. The developed model extracts elongated structures from images by using edge detection, segmentation and clustering techniques. The study also extracts non-road regions like vegetative fields, bare soils and water bodies to obtain more accurate road map. The model is constructed in a modular approach that aims to extract roads with different characteristics. Each module output is combined to create a road score map...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Besbinar and A. A. Alatan, “Sea Detection on High-Resolution Panchromatic Satellite Images Using Texture and Intensity,” 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35075.