Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Smart Drug Delivery Systems in Cancer Therapy
Date
2018-01-01
Author
ÜNSOY, GÖZDE
Gündüz, Ufuk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
269
views
0
downloads
Cite This
Background: Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics.
Subject Keywords
Smart drug delivery
,
Stimulus responsive drug release
,
Nanocarriers
,
Targeted durg delivery
,
Smart nanocarriers
,
Targeted cancer therapy
URI
https://hdl.handle.net/11511/35126
Journal
CURRENT DRUG TARGETS
DOI
https://doi.org/10.2174/1389450117666160401124624
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery
ÜNSOY, GÖZDE; Khodadust, Rouhollah; Yalcin, Serap; Mutlu, Pelin; Gündüz, Ufuk (2014-10-01)
Targeted drug delivery is a promising alternative to overcome the limitations of classical chemotherapy. In an ideal targeted drug delivery system carrier nanoparticles would be directed to the tumor tissue and selectively release therapeutic molecules. As a novel approach, chitosan coated magnetic nanoparticles (CS MNPs) maintain a pH dependent drug delivery which provides targeting of drugs to the tumor site under a magnetic field. Among various materials, chitosan has a great importance as a pH sensitive...
Tailoring the magnetic behavior of polymeric particles for bioapplications
YAKAR, ARZU; Tansik, Gulistan; Keskin, Tugba; Gündüz, Ufuk (2013-05-01)
In this study, magnetic polymeric nanoparticles were prepared use in for targeted drug delivery. First, iron oxide (Fe3O4) magnetic nanoparticles (MNPs) were synthesized by coprecipitation with ferrous and ferric chloride salts. Then, to render the MNPs hydrophobic, the surfaces were covered with oleic acid. Finally, the hydrophobic MNPs (H-MNPs) were encapsulated with polymer. The emulsion evaporation technique was used for the preparation of polymer-coated H-MNP. Poly(DL-lactide-co-glycolide) (PLGA) and c...
Poly (I:C)- and doxorubicin-loaded magnetic dendrimeric nanoparticles affect the apoptosis-related gene expressions in MCF-7 cells
Khodadust, Rouhollah; Alpsoy, Aktan; Ünsoy, Gözde; Gündüz, Ufuk (The Scientific and Technological Research Council of Turkey, 2020-8-19)
Use of nanoparticles as drug carrier vectors has great potential to circumvent the limitations associated with chemotherapy, including drug resistance and destructive side effects. For this purpose, magnetic generation 4 dendrimeric nanoparticles were prepared to carry chemotherapeutic agent doxorubicin (G 4-DOX) and immune modulator polyinosinic:polycytidylic acid [Poly(I:C)]. As previously reported, DOX and Poly(I:C) was loaded onto G 4 nanoparticles (PIC-G 4-DOX). Cellular internalization study using con...
Surface functionalization of SBA - 15 particles for amoxicillin delivery
Sevimli, Filiz F; Yılmaz, Ayşen; Department of Chemistry (2011)
There are several studies in order to control drug delivery, decrease the toxicity of drugs and also for novel biomedical applications. It is necessary to be able to control the release of the drug within the body by using drug delivery systems. Mesoporous silica compounds have only been discovered twenty years ago and they have already attracted many researchers to study these materials for several applications. SBA-15 particles have a highly ordered regular structure and are a good matrix for guest-host a...
Peptide-based drug systems /
Parlak, Melek; Özçubukçu, Salih; Department of Chemistry (2017)
The increasing appeal of safe, cheap and effective treatments against various type of diseases has paved the way for the discovery and development of innovative peptide-based drug and drug delivery systems. The relative ease with which peptide based-materials can be synthesized and the wide range of synthetic techniques available have ensured that these materials can be tuned to adopt specific conformation or modified to contain specific functional groups. Our major focus in this thesis is developing peptid...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. ÜNSOY and U. Gündüz, “Smart Drug Delivery Systems in Cancer Therapy,”
CURRENT DRUG TARGETS
, pp. 202–212, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35126.