Investigation of microstructure-ultrasonic velocity relationship in SiCp-reinforced aluminium metal matrix composites

Twenty-one sets of specimens were fabricated by hot pressing powder mixtures containing various volume and size combinations of pure Al and SiC particles. Neither heat treatment nor secondary deformation processes were applied. The microstructures of the specimens were characterised by optical and scanning electron microscopy. Using a 10 MHz probe, the velocity of ultrasonic longitudinal waves was measured. The results show that in general the ultrasonic velocity increases with an increase in SiC content. However, for larger Al/SiC particle size ratio and higher volume fraction of SiC, ultrasonic velocity decreases owing to microporosity caused by the segregation of SiC particles along the grain boundaries of aluminium. It is concluded that ultrasonic techniques providing fast and non-destructive information are promising for quality assurance of the composites, and may also help to optimise process parameters.
Materials Science and Engineering A


Investigation of the variations in microstructure and mechanical properties of dual-matrix ductile iron by Magnetic Barkhausen Noise analysis
Gür, Cemil Hakan; Erdogan, Mehmet (Informa UK Limited, 2008-01-01)
The variations in the microstructure and tensile properties of dual-matrix ductile irons have been investigated non-destructively by Magnetic Barkhausen Noise (MBN) method. Specimens have been intercritically austenitised at 795 degrees C and 815 degrees C for 20 minutes, and then oil-quenched to obtain different martensite volume fractions. Two specimens, namely as-cast and oil-quenched from 900 degrees C, were prepared for comparison purpose. To investigate the effect of tempering, some specimens were tem...
Extensive deformation behavior of an all-oxide Al2O3-TiO2 nanostructured multilayer ceramic at room temperature
Dericioğlu, Arcan Fehmi; Kagawa, Yutaka (Cambridge University Press (CUP), 2009-11-01)
An all-oxide Al2O3-TiO2 ceramic multilayer composed of 10-100 nm thick alternating layers was fabricated using the reactive magnetron sputtering process. Microindentation tests were carried out on the multilayer ceramic followed by microstructural observations of the cross-sections of the indented sites to characterize the indentation response of the system. During the observations, it was noted that an extensive room temperature "deformation" occurred in the multilayer ceramic material. The material shows ...
Study on thermoluminescence of TlInS2 layered crystals doped with Pr
Delice, S.; IŞIK, MEHMET; Hasanlı, Nızamı (Elsevier BV, 2018-06-15)
Praseodymium (Pr) doped TlInS2 crystals were studied by means of thermoluminescence (TL) measurements performed below room temperature with various heating rates. Detected TL signal exhibited glow curve consisting in overlapping two TL peaks at temperatures of 35 K (peak A) and 48 K (peak B) for 0.6 K/s heating rate. TL curve was analyzed with curve fitting and initial rise methods. Both of the applied methods resulted in consistent activation energies of 19 and 45 meV. The revealed trap levels were found t...
Investigation of carrier scattering mechanisms in TIInS2 single crystals by Hall effect measurements
Qasrawi, AF; Hasanlı, Nızamı (Wiley, 2004-05-01)
TlInS2 single crystals are studied through the conductivity and Hall effect measurements in the temperature regions of 100-400 and 170-400 K, respectively. An anomalous behavior of Hall voltage, which changes sign below 315 K, is interpreted through the existence of deep donor impurity levels that behave as acceptor levels when are empty. The hole and electron mobility are limited by the hole- and electron-phonon short range interactions scattering above and below 315 K, respectively. An energy level of 35 ...
Thermally stimulated currents in n-InS single crystals
Hasanlı, Nızamı; Yuksek, NS (Elsevier BV, 2003-03-24)
Thermally stimulated current measurements are carried out on as-grown n-InS single crystals in the temperature range of 10-125 K. Experimental evidence is found for four trapping centers present in InS. They are located at 20, 35, 60 and 130 meV. The trap parameters have been determined by various methods of analysis, and they agree well with each other.
Citation Formats
C. H. Gür, “Investigation of microstructure-ultrasonic velocity relationship in SiCp-reinforced aluminium metal matrix composites,” Materials Science and Engineering A, pp. 29–35, 2003, Accessed: 00, 2020. [Online]. Available: