Electrochemical Synthesis of Poly(methylsilyne) and Investigation of the Effects of Parameters on the Synthesis

Nur, Yusuf
Bayram, Göknur
Toppare, Levent Kamil
This study aims to synthesize poly(methylsilyne) by electrochemical reduction of methyltrichlorosilane at a constant potential of -6 V, while investigating the effects of parameters such as the nature of the electrode, solvent and supporting electrolyte, the monomer/solvent ratio, and the reaction time on the properties of the products. The polymer was characterized by H-1-NMR (Proton Nuclear Magnetic Resonance Spectroscopy), FTIR (Fourier Transform Infrared Spectroscopy), UV-Visible Spectroscopy, and TGA (Thermogravimetry Analysis). Copper (Cu) electrodes were used as stainless steel introduced impurities into the system. In an electrolytic media consisting of acetonitrile (AN), sodium dodecyl sulfate (SDS), and Cu electrodes, increasing the monomer/solvent ratio and the reaction time affected the system negatively based on the purity of poly (methylsilyne) in the final product. Reproducible results were only achieved in an electrolytic media containing 1,2-dimethoxyethane (DME) and tetrabutylammonium perchlorate (TBAP). In this system, the purity of the products was less dependent on monomer/solvent ratio and reaction time. The color and the H-1-NMR, FTIR, and UV-Visible spectra proved that the product is poly(methylsilyne). In addition, the significantly high-average decomposition temperature obtained from TGA results revealed that the polymer is a good candidate as an additive for improving thermal stability and flame retardancy in thermoplastics. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 118: 3049-3057, 2010


Tuerker, Lemi; Atalar, Taner; Guemues, Selcuk (Informa UK Limited, 2009-01-01)
Computational studies on tetranitro derivatives of [2,2]paracyclophane are carried out at B3LYP/6-31G(d,p) level of theory. Optimized geometries, electronic structures and some thermodynamic properties have been obtained in their ground states. Also, detonation performances were evaluated by the Kamlet-Jacobs equations, based on the quantum-chemical calculated densities and heat of formation values. Aromaticities were investigated by performing NICS (nucleus independent chemical shift) calculations using th...
Microwave initiated polymerization of trihalophenyleneoxide and aniline
Levent, Fulya; Kısakürek, Duygu; Toppare, Levent Kamil; Department of Polymer Science and Technology (2011)
The aim of the study is to synthesize poly(dibromophenyleneoxide) and polyaniline separately applying different microwave energies (90-900 watt), water amounts (1-5 ml) and time intervals (2-10 min) and investigate the effects of these parameters on the percent conversion of the polymers. The synthesis of poly(dibromophenyleneoxide) (P), radical ion polymer (RIP) and crosslinked polymer (CLP) were achieved by using tribromophenol (TBP) and Ca(OH)2 via microwave energy in a very short time interval. P and RI...
Immobilization of invertase in conducting polypyrrole/PMMA-co-PMTM graft copolymers
Yildiz, HB; Kiralp, S; Toppare, Levent Kamil; Yagci, Y (Wiley, 2005-04-15)
In this study, invertase was immobilized in copolymer electrodes constructed. Three different types of polymethyl methacrylate-co-polymethyl thienyl methacrylate matrices were used to obtain copolymers that were characterized by FT-IR spectroscopy. Immobilization of enzymes was carried out by the entrapment of the enzyme in conducting polymer matrices during electrochemical polymerization of pyrrole through thiophene moieties of polymers. Immobilization of the enzyme was achieved by application of 1.0 V con...
Electrochemical synthesis of new conjugated polymers based on carbazole and furan units
Oguzturk, H. Esra; TİRKEŞ, SEHA; Önal, Ahmet Muhtar (2015-08-01)
In this study, synthesis of four new monomers; 3,6-di(2-furyl)-9H-carbazole (M1), 3,6-di(2-furyl)-9-ethyl-carbazole (M2), 2,7-di(2-furyl)-9-H-carbazole (M3), 2,7-di(2-furyl)-9-(tridecan-7-yl)-9H-carbazole (M4), was achieved via Stifle cross-coupling reaction. The monomers were electrochemically polymerized, via repetitive cycling in acetonitrile-tetrabutylammonium hexafluorophosphate electrolytic medium. Optical and electrochemical properties of the monomers and their corresponding polymers were investigate...
Kinetic study of the reaction between hydroxyl-terminated polybutadiene and isophorone diisocyanate in bulk by quantitative FTIR spectroscopy
Kincal, D; Özkar, Saim (Wiley, 1997-12-05)
A kinetic study of the reaction between a hydroxyl-terminated polybutadiene (HTPB) and isophorone diisocyanate (IPDI) was carried out in the bulk state by using quantitative Fourier transform infrared(FTIR) spectroscopy. The reaction is shown to obey a second-order rate law, being first order in both the HTPB and IPDI concentrations. The activation parameters obtained from the evaluation of kinetic data are Delta H-double dagger = 41.1 +/- 0.4 kJ mol, Delta S-double dagger = -198 +/- 2 J K-1 mol(-1) and E-a...
Citation Formats
D. EROĞLU PALA, Y. Nur, G. Bayram, and L. K. Toppare, “Electrochemical Synthesis of Poly(methylsilyne) and Investigation of the Effects of Parameters on the Synthesis,” JOURNAL OF APPLIED POLYMER SCIENCE, pp. 3049–3057, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35478.