The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces

Over the past decade, nanotechnology (or the use of materials with dimensions less than 100 nm in at least one direction) has been proposed to improve the lifespan of many biomedical devices, including orthopedic implants. Specifically, to improve the cytocompatibility properties of currently used orthopedic implants, nanotechnology has been used to create nanometer surface features (through anodization) on titanium. In addition to this approach, another therapeutic method widely investigated to heal bone fractures is through electrical stimulation. Here, the coupling of such nanotechnology approaches and electrical stimulation were studied to maximize bone cell functions on titanium. Results showed that compared to unstimulated conventional titanium, bone forming cell (osteoblast) proliferation and long-term functions (alkaline phosphatase synthesis, collagen type I synthesis and calcium deposition) were improved upon both the creation of an anodized nanotubular titanium surface and biphasic electrical stimulation. Most importantly, when electrical stimulation was combined with anodized nanotubular titanium features, osteoblast long-term functions were improved the most. Therefore, coupling the positive effects of anodized nanotubular titanium topographies with currently used therapeutic electrical stimulation should be further studied to improve orthopedic implants.


Development of strain monitoring system for glass fiber reinforced composites via embedded electrically conductive pathways
Tanabi, Hamed; Erdal Erdoğmuş, Merve (Informa UK Limited, 2019-06-15)
Among numerous types of health-monitoring and damage-sensing sensors that can be integrated into composites, electrically conductive sensors offer a simple, cost-effective, and durable option for structural health monitoring in fiber reinforced composites. In this study, a novel approach is introduced to create electrical conductive networks in glass fiber reinforced composites. For this purpose, hollow micro-channels are generated using vaporization of sacrificial components (VaSCs) which are subsequently ...
Integrated biomimetic scaffolds for soft tissue engineering
Güven, Sinan; Hasırcı, Nesrin; Department of Biotechnology (2006)
Tissue engineering has the potential to create new tissue and organs from cultured cells for transplantation. Biodegradable and biocompatible scaffolds play a vital role in the transfer of the cultured cells to a new tissue. Various scaffolds for soft tissue engineering have been developed, however there is not any structure totally mimicking the natural extracellular matrix (ECM), ready to use. In this study biodegradable and biocompatible scaffolds were developed from natural polymers by tissue engineerin...
A procedure to embed fibre Bragg grating strain sensors into GFRP sandwich structures
Dawood, T. A.; Shenoi, R. A.; Şahin, Melin (Elsevier BV, 2007-01-01)
Embedding FBG strain sensors within a GFRP sandwich composite material allows early detection of internal defects. However, the sensors need to survive the manufacturing process to provide this capability. Vacuum infusion is commonly used to manufacture GFRP sandwich composite materials but, it needs to be modified to accommodate the embedding process. A stage by stage procedure is demonstrated here to embed FBG strain sensors between the skin-core interface of a GFRP sandwich beam specimen using the vacuum...
A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features
Jodati, Hossein; Yilmaz, Bengi; Evis, Zafer (Elsevier BV, 2020-07-01)
Tissue engineering has acquired remarkable attention as an alternative strategy to treat and restore bone defects during recent years. A scaffold is a fundamental component for tissue engineering, on which cells attach, proliferate and differentiate to form new desirable functional tissue. The composition, and structural features of scaffolds, including porosity and pore size, play a fundamental role in the success of tissue-engineered construct. This review summarizes the effect of porosity and pore size o...
Using mathematical models to understand the effect of nanoscale roughness on protein adsorption for improving medical devices
Ercan, Batur; Carpenter, Joseph; Webster, Thomas J. (Informa UK Limited, 2013-01-01)
Surface roughness and energy significantly influence protein adsorption on to biomaterials, which, in turn, controls select cellular adhesion to determine the success and longevity of an implant. To understand these relationships at a fundamental level, a model was originally proposed by Khang et al to correlate nanoscale surface properties (specifically, nanoscale roughness and energy) to protein adsorption, which explained the greater cellular responses on nanostructured surfaces commonly reported in the ...
Citation Formats
B. Ercan, “The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces,” BIOMATERIALS, pp. 3684–3693, 2010, Accessed: 00, 2020. [Online]. Available: