Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Upper mantle discontinuity structure beneath East Anatolian Plateau (Turkey) from receiver functions
Date
2008-05-30
Author
Özacar, Atilla Arda
Gilbert, Hersh
Zandt, George
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Imaging of seismic velocity discontinuities with receiver functions suggests a complex mantle structure beneath the East Anatolian Plateau. By stacking all the receiver functions as a function of ray parameter, we examined the moveout characteristics of the data set and tested different velocity models to fit the arrival times of converted phases from the Moho and the lithosphere-asthenosphere boundary and their multiples. The best fitting model shows anomalously thin crust (40 km) and lithosphere (65 km), and low uppermost mantle velocities causing systematic delays on later discontinuity arrivals. These findings are consistent with the high plateau supported by partially molten and buoyant asthenosphere. The upper mantle discontinuities are all visible in different frequencies (0.15 and 0.4 Hz). Especially, the 410 km discontinuity does not show frequency dependence in amplitude and suggests a sharpness of 10 km or less. Spatial variations of the 410 and 660 km discontinuities reveal anticorrelated topography and distinct zones of diminished amplitude associated with a detached slab and delaminated fragments of lithospheric mantle. In the south, the slab becomes deeper and horizontally deflected towards the east suggesting westward migration of slab detachment and resistance to slab penetration at the 660 km discontinuity. In the north, the mantle transition zone is characterized by two spatially limited lithospheric fragments with complex geometry. At the center of the study area, the transition zone is thin (230 km) suggesting excess temperature of 120 degrees C. This warm mantle anomaly most likely is due to hot material trapped within the upper mantle between slab in the south and delaminated fragments in the north.
Subject Keywords
Lithosphere
,
Upper mantle
,
Transition zone
,
Receiver function
,
Slab detachment
,
Eastern Turkey
URI
https://hdl.handle.net/11511/35724
Journal
EARTH AND PLANETARY SCIENCE LETTERS
DOI
https://doi.org/10.1016/j.epsl.2008.02.036
Collections
Department of Geological Engineering, Article