Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate
Date
2016-08-01
Author
Avsar, Ahmet Levent
Şahin, Melin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
236
views
0
downloads
Cite This
A bimorph piezoelectric energy harvester is developed for harvesting energy under the vortex induced vibration and it is integrated to a host structure of a trapezoidal plate without changing its passive dynamic properties. It is aimed to select trapezoidal plate as similar to a vertical fin-like structure which could be a part of an air vehicle. The designed energy harvester consists of an aluminum beam and two identical multi fiber composite (MFC) piezoelectric patches. In order to understand the dynamic characteristic of the trapezoidal plate, finite element analysis is performed and it is validated through an experimental study. The bimorph piezoelectric energy harvester is then integrated to the trapezoidal plate at the most convenient location with minimal structural displacement. The finite element model is constructed for the new combined structure in ANSYS Workbench 14.0 and the analyses performed on this particular model are then validated via experimental techniques. Finally, the energy harvesting performance of the bimorph piezoelectric energy harvester attached to the trapezoidal plate is also investigated through wind tunnel tests under the air load and the obtained results indicate that the system is a viable one for harvesting reasonable amount of energy.
Subject Keywords
Piezoelectric energy harvesting
,
Finite element
,
Experimental modal analysis
,
Wind tunnel test
URI
https://hdl.handle.net/11511/35726
Journal
SMART STRUCTURES AND SYSTEMS
DOI
https://doi.org/10.12989/sss.2016.18.2.249
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Piezoelectric Cantilever Prototype for Energy Harvesting in Computing Applications
Beker, Levent; Külah, Haluk; Muhtaroglu, Ali (2011-12-02)
This paper presents a piezoelectric energy harvester (PEH) to convert vibrations to electrical power. A unimorph cantilever beam is used to generate voltage on piezoelectric material bonded close to the anchor of the cantilever beam. A 4.85 x 1 x 0.04 cm structural layer with piezoelectric material yields peak-to-peak voltage of 64 V at the resonance frequency of the structure. The empirically confirmed maximum power output is close to 0.5 mW. The results from validation data on the observed structure has b...
Energy Harvesting from Piezoelectric Stacks Using Impacting Beam
Ozpak, Yigit; Aykan, Murat; Çalışkan, Mehmet (2015-02-05)
Piezoelectric materials can be used for energy harvesting from ambient vibration due to their high power density and ease of application. Two basic methods, namely, tuning the natural frequency to the operational frequency and increasing the operation bandwidth of the harvester are commonly employed to maximize the energy harvested from piezoelectric materials. Majority of the studies performed in recent years focus mostly on tuning the natural frequency of the harvester. However, small deviations in operat...
Energy harvesting from piezoelectric stacks via impacting beam
Özpak, Yiğit; Çalışkan, Mehmet; Department of Mechanical Engineering (2014)
Piezoelectric materials can be used for energy harvesting from ambient vibration due to their high power density and ease of application. Two basic methods, namely, tuning the natural frequency to the operational frequency and increasing the operation bandwidth of the harvester are commonly employed to maximize the energy harvested from piezoelectric materials. Majority of the studies performed in recent years focus mostly on tuning the natural frequency of the harvester. However, small deviations in operat...
HARVESTING ELECTRICAL ENERGY FROM MECHANICAL VIBRATION BY PIEZOELECTRIC MATERIALS AND PERFORMANCE OPTIMIZATION
Ogunjinmi, Festus; Murat , Fahrioğlu; Electrical and Electronics Engineering (2022-9-2)
The energy conversion performance of piezoelectric cantilever-beam energy harvesters (PCEH) is improved by developing and designing a novel. A rectangular hole is located in the middle of the metal substrate. Using the mathematical model of the PCEH, the mathematical expression of the following is derived as the eigenfrequency, displacement of the proof mass, and output voltage and power level achieved due to displacement of the cantilever carrying the piezoelectric material. We analyze the eigenfrequ...
Energy Harvesting Through Lumped Elements Located on Metamaterial Absorber Particles
Gunduz, Ozan T.; Sabah, Cumali (2015-09-09)
We propose and examine an enhanced version of a multi-band metamaterial absorber for an energy harvesting application. The numerical results of the multi-band absorption characteristics of no-load conditions are presented and compared with the loading conditions. At most % 50 of the incoming wave energy whose correspondence is 0.25 Watt is converted to real power at the resistive loads at 5.88 GHz by the usage of 2000 ohms loads. In order to evaluate the harvesting efficiency, three different types of effic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. L. Avsar and M. Şahin, “Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate,”
SMART STRUCTURES AND SYSTEMS
, pp. 249–265, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35726.