Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure
Download
index.pdf
Date
2007-03-30
Author
Alper, Said Emre
Azgın, Kıvanç
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
9
views
22
downloads
Cite This
This paper presents a new, high-performance silicon-on-insulator (SOI) MEMS gyroscope with decoupled oscillation modes. The gyroscope structure allows it to achieve matched-resonance-frequencies, large drive-mode oscillation amplitude, high sense-mode quality factor, and low mechanical cross-talk. The gyroscope is fabricated through the commercially available SOIMUMPS process of MEMSCAP Inc. The fabricated gyroscope has minimum capacitive sense gaps of 2.6 mu m and a structural silicon thickness of 25 mu m, and it fits into a chip area smaller than 3 mm x 3 mm. The fabricated gyroscope is hybrid connected to a CMOS capacitive interface ASIC chip, which is fabricated in a standard 0.6 mu m CMOS process. The characterization of the hybrid-connected gyroscope demonstrates a low measured noise-equivalent rate of 90 degrees/h/Hz(1/2) at atmospheric pressure, eliminating the need for a vacuum package for a number of applications. R-2-non-linearity of the gyroscope is measured to be better than 0.02%. The gyroscope has a low quadrature signal of 70 degrees/s and a short-term bias stability of 1.5 degrees/s. The angular rate sensitivity of the gyroscope is 100 mu V/(degrees/s) at atmospheric pressure, which improves 24 times to 2.4 mV/(degrees/s) at vacuum. The noise-equivalent rate of the gyroscope at 20 mTorr vacuum is measured to be 35 degrees/h/Hz(1/2), which can be improved further by reducing the electromechanical noise.
Subject Keywords
Instrumentation
,
Electrical and Electronic Engineering
,
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
,
Condensed Matter Physics
,
Metals and Alloys
,
Gyroscope
,
Angular rate sensor
,
SOI gyroscope
,
Mechanical decoupling
URI
https://hdl.handle.net/11511/35755
Journal
SENSORS AND ACTUATORS A-PHYSICAL
DOI
https://doi.org/10.1016/j.sna.2006.06.043
Collections
Department of Mechanical Engineering, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. E. Alper, K. Azgın, and T. Akın, “A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure,”
SENSORS AND ACTUATORS A-PHYSICAL
, vol. 135, pp. 34–42, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35755.