A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure

Download
2007-03-30
This paper presents a new, high-performance silicon-on-insulator (SOI) MEMS gyroscope with decoupled oscillation modes. The gyroscope structure allows it to achieve matched-resonance-frequencies, large drive-mode oscillation amplitude, high sense-mode quality factor, and low mechanical cross-talk. The gyroscope is fabricated through the commercially available SOIMUMPS process of MEMSCAP Inc. The fabricated gyroscope has minimum capacitive sense gaps of 2.6 mu m and a structural silicon thickness of 25 mu m, and it fits into a chip area smaller than 3 mm x 3 mm. The fabricated gyroscope is hybrid connected to a CMOS capacitive interface ASIC chip, which is fabricated in a standard 0.6 mu m CMOS process. The characterization of the hybrid-connected gyroscope demonstrates a low measured noise-equivalent rate of 90 degrees/h/Hz(1/2) at atmospheric pressure, eliminating the need for a vacuum package for a number of applications. R-2-non-linearity of the gyroscope is measured to be better than 0.02%. The gyroscope has a low quadrature signal of 70 degrees/s and a short-term bias stability of 1.5 degrees/s. The angular rate sensitivity of the gyroscope is 100 mu V/(degrees/s) at atmospheric pressure, which improves 24 times to 2.4 mV/(degrees/s) at vacuum. The noise-equivalent rate of the gyroscope at 20 mTorr vacuum is measured to be 35 degrees/h/Hz(1/2), which can be improved further by reducing the electromechanical noise.
SENSORS AND ACTUATORS A-PHYSICAL

Suggestions

A symmetric surface micromachined gyroscope with decoupled oscillation modes
Alper, Said Emre; Akın, Tayfun (2001-06-14)
This paper reports a new symmetric gyroscope structure that allows not only matched resonant frequencies for the drive and sense vibration modes for better resolution, but also decoupled drive and sense oscillation modes for preventing unstable operation due to mechanical coupling. The symmetry and decoupling features are achieved at the same time with a new suspension beam design. The gyroscope structure is designed using a standard three-layer polysilicon surface micromachining process (MUMPs) and simulat...
An electromagnetic micro energy harvester based on an array of parylene cantilevers
Sari, Ibrahim; Balkan, Raif Tuna; Külah, Haluk (IOP Publishing, 2009-10-01)
This paper presents the design, optimization and implementation of an electromagnetic type vibration-to-electrical micro energy harvester. The proposed harvester implements a new design employing array of parylene cantilevers on which planar gold coils are fabricated. The micro harvester generates voltage by virtue of the relative motion between the coils and a stationary magnet. The coils are connected electrically in series to sum up the voltage output from individual cantilevers. The number of cantilever...
An Automatically Mode-Matched MEMS Gyroscope With Wide and Tunable Bandwidth
Sonmezoglu, Soner; Alper, Said Emre; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2014-04-01)
This paper presents the architecture and experimental verification of the automatic mode-matching system that uses the phase relationship between the residual quadrature and drive signals in a gyroscope to achieve and maintain matched resonance mode frequencies. The system also allows adjusting the system bandwidth with the aid of the proportional-integral controller parameters of the sense-mode force-feedback controller, independently from the mechanical sensor bandwidth. This paper experimentally examines...
A Compact Angular Rate Sensor System Using a Fully Decoupled Silicon-on-Glass MEMS Gyroscope
Alper, Said Emre; Temiz, Yuksel; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2008-12-01)
This paper presents the development of a compact single-axis angular rate sensor system employing a 100-mu m-thick single-crystal silicon microelectromechanical systems gyroscope with an improved decoupling arrangement between the drive and sense modes. The improved decoupling arrangement of the gyroscope enhances the robustness of sensing frame against drive-mode oscillations and therefore minimizes mechanical crosstalk between the drive and sense modes, yielding a small bias instability. The gyroscope cor...
A wireless batch sealed absolute capacitive pressure sensor
Akar, O.; Akın, Tayfun; Najafi, K. (Elsevier BV, 2001-12-15)
This paper reports the development of an absolute wireless pressure sensor that consists of a capacitive sensor and a gold-electroplated planar coil. Applied pressure deflects a 6 mum-thin silicon diaphragm, changing the capacitance formed between it and a metal electrode supported on a glass substrate. The resonant frequency of the LC circuit formed by the capacitor and the inductor changes as the capacitance changes; this change is sensed remotely through inductive coupling, eliminating the need for wire ...
Citation Formats
S. E. Alper, K. Azgın, and T. Akın, “A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure,” SENSORS AND ACTUATORS A-PHYSICAL, pp. 34–42, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35755.