Analysis of a bac operon-silenced strain suggests pleiotropic effects of bacilysin in Bacillus subtilis

2020-04-01
Ertekin, Ozan
Taskin, Ash Aras
Demir, Mustafa
Karataş, Ayten
Özcengiz, Gülay
Bacilysin, as the simplest peptide antibiotic made up of only L-alanine and L-anticapsin, is produced and excreted by Bacillus subtilis under the control of quorum sensing. We analyzed bacilysin-nonproducing strain OGU1 which was obtained by bacA-targeted pMutin T3 insertion into the parental strain genome resulting in a genomic organization (bacA '::lacZ::erm::bacABCDEF) to form an IPTG-inducible bac operon. Although IPTG induction provided 3- to 5-fold increment in the transcription of bac operon genes, no bacilysin activity was detectable in bioassays and inability of the OGU1 to form bacilysin was confirmed by UPLC-mass spectrometry analysis. Phenotypic analyses revealed the deficiencies in OGU1 with respect to colony pigmentation, spore coat proteins, spore resistance and germination, which could be rescued by external addition of bacilysin concentrate into its cultures. 2DE MALDI-TOF/MS and nanoLC-MS/MS were used as complementary approaches to compare cytosolic proteomes of OGU1. 2-DE identified 159 differentially expressed proteins corresponding to 121 distinct ORFs. In nanoLC-MS/MS, 76 proteins were differentially expressed in OGU1. Quantitative transcript analyses of selected genes validated the proteomic findings. Overall, the results pointed to the impact of bacilysin on expression of certain proteins of sporulation and morphogenesis; the members of mother cell compartment-specific sigma(E) and sigma(K) regulons in particular, quorum sensing and two component-global regulatory systems, peptide transport, stress response as well as CodY- and ScoC-regulated proteins.
JOURNAL OF MICROBIOLOGY

Suggestions

Analysis of acyl CoA ester intermediates of the mevalonate pathway in Saccharomyces cerevisiae.
Şeker, Tamay; Nielsen, J (Springer Science and Business Media LLC, 2005-04-01)
The mevalonate pathway plays an important role in providing the cell with a number of essential precursors for the synthesis of biomass constituents. With respect to their chemical structure, the metabolites of this pathway can be divided into two groups: acyl esters [acetoacetyl CoA, acetyl CoA, hydroxymethylglutaryl (HMG) CoA] and phosphorylated metabolites (isopentenyl pyrophosphate, dimethylallyl pyrophosphate, geranyl pyrophosphate, farnesyl pyrophosphate). In this study, we developed a method for the ...
Investigation of cytocidal effect of K5 type yeast killer protein on sensitive microbial cells
Sertkaya, Abdullah; İzgü, Kadri Fatih; Department of Biology (2005)
Some yeasts secrete polypeptide toxins, which are lethal to other sensitive yeast cells, gram-positive pathogenic bacteria and pathogenic fungi. Therefore these are designated as killer toxins. Killer toxins are suggested as potent antimicrobial agents especially for the protection of fermentation process against contaminating yeasts, biological control of undesirable yeasts in the preservation of foods. Moreover they are promising antimicrobial agents in the medical field; due to immune system suppressing ...
Purification, characterization, and identification of a novel bifunctional catalase-phenol oxidase from Scytalidium thermophilum
Kocabas, Didem Sutay; Bakir, Ufuk; Phillips, Simon E. V.; McPherson, Michael J.; Ögel, Zümrüt Begüm (Springer Science and Business Media LLC, 2008-06-01)
A novel bifunctional catalase with an additional phenol oxidase activity was isolated from a thermophilic fungus, Scytalidium thermophilum. This extracellular enzyme was purified ca. 10-fold with 46% yield and was biochemically characterized. The enzyme contains heme and has a molecular weight of 320 kDa with four 80 kDa subunits and an isoelectric point of 5.0. Catalase and phenol oxidase activities were most stable at pH 7.0. The activation energies of catalase and phenol oxidase activities of the enzyme ...
Cloning, characterization and heterologous expression of the aspartokinase and aspartate semialdehyde dehydrogenase genes of cephamycin C-producer Streptomyces clavuligerus
Tunca, S; Yilmaz, EI; Piret, J; Liras, P; Özcengiz, Gülay (Elsevier BV, 2004-09-01)
Carbon flow through the lysine branch of the aspartate biosynthetic pathway is a rate-limiting step in the formation of cephamycin C, a broad spectrum P-lactam antibiotic produced by Streptomyces clavuligerus. In this study, genes which encode the enzymes catalyzing the first two steps of the aspartate pathway, ask (aspartokinase) and asd (aspartate semialdehyde dehydrogenase), in S. clavuligerus NRRL 3585 were cloned and sequenced. Nucleotide sequencing and codon preference analysis revealed three complete...
Analysis of the genetic determinant for production of the pediocin P of Pediococcus pentosaecus Pep 1
Osmanagaoglu, O; Beyatli, Y; Gündüz, Ufuk; Sacilik, SC (2000-01-01)
Pediococcus pentosaceus Pep1 is a vacuum-packaged Turkish sausage isolate which produces a potentially novel bacteriocin of the pediocin (anti-Listeria) family of peptides designated as pediocin P. Curing experiments and plasmid profile analysis indicated that both bacteriocin immunity and production determinants were linked and encoded by 9.0 MDa plasmid, pHD1.0. Attempts to transform purified plasmid pHD1.0 into recipient Escherichia coli JM109 cells by electroporation were successful but none of the E. c...
Citation Formats
O. Ertekin, A. A. Taskin, M. Demir, A. Karataş, and G. Özcengiz, “Analysis of a bac operon-silenced strain suggests pleiotropic effects of bacilysin in Bacillus subtilis,” JOURNAL OF MICROBIOLOGY, pp. 297–313, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35799.