Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Detailed investigation of electron transport, capture and, gain in Al0.3Ga0.7As/GaAs quantum well infrared photodetectors
Date
2004-02-01
Author
Cellek, OO
Beşikci, Cengiz
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
7
views
0
downloads
We present an investigation of Al0.3Ga0.7As/GaAs quantum well infrared photodetectors (QWIPs) through detailed ensemble Monte Carlo simulations. Both two-dimensional and three-dimensional electrons are simulated with realistically evaluated scattering rates. Transport of the excited electrons is accurately modelled including the reflections from well-barrier interfaces. The details incorporated into the simulator clarified some important phenomena, as well as verifying the previous predictions. Under large bias, well accumulation occurs non-uniformly, being highest near the emitter. Contrary to previous assumptions, the L valley is found to be the origin of a significant portion of the captured electrons even under typical bias voltages. Gamma-L transfer, while decreasing carrier mobility, also increases capture probability and decreases the electron lifetime, having a twofold effect on device gain. The above findings explain the large difference between the gains of AlxGa1-xAs/GaAs (with x similar to 0.3) and InP/In0.53Ga0.47As (or GaAs/InxGa1-xAs) QWIPs, as well as the bias dependence of gain. The average barrier electron velocity is close to the saturated electron velocity in bulk Al0.3Ga0.7As under moderate and large bias; however, low-field mobility is significantly lower than that in bulk material. While complementing previous work, our results offer a deeper understanding of some important QWIP characteristics by resolving the details of transport and electron dynamics in the device.
Subject Keywords
Electrical and Electronic Engineering
,
Materials Chemistry
,
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/36079
Journal
SEMICONDUCTOR SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1088/0268-1242/19/2/010
Collections
Department of Electrical and Electronics Engineering, Article