Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical Investigation of Various Approaches to Avoid Natural Convection Instabilities Inside the Channels of Horizontal Plate Fin Heat Sinks
Date
2016-11-17
Author
Tarı, İlker
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
181
views
0
downloads
Cite This
In case of natural heat convection from a horizontal plate fin heat sink, heat transfer rates highly depend on the geometric parameters. It is observed that if the fin height is very low, fresh cooler air may not be able to reach middle parts of the heat sink causing an ineffective use of the extended heat transfer area. Using a validated numerical model of an underperforming heat sink, various ways of improving heat sink geometry has been investigated. The tried approaches include leaving gaps in the length of the fins in different patterns, adding two different shape pin fins in the channels between the plate fins and raising the height of the fins on the edges. The last approach is shown to be effective in improving heat transfer by blocking the side flows over the heat sink. By numerical simulations, causes of the unwanted in-channel longitudinal vortices were also investigated in detail with the help of powerful flow visualization capability of Computational Fluid Dynamics.
URI
https://hdl.handle.net/11511/36108
DOI
https://doi.org/10.1115/imece201667196
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Numerical investigation of natural convection from inclined plate finned heat sinks
Mehrtash, Mehdi; Tarı, İlker; Department of Mechanical Engineering (2011)
Finned heat sink use for electronics cooling via natural convection is numerically investigated. An experimental study from the literature that is for vertical surfaces is taken as the base case and the experimental setup is numerically modeled using commercial CFD software. The flow and temperature fields are resolved. A scale analysis is applied to produce an order-of-magnitude estimate for maximum convection heat transfer corresponding to the optimum fin spacing. By showing a good agreement of the result...
Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion
Özerinç, Sezer; Kakac, S. (2012-12-01)
Nanofluids are promising heat transfer fluids due to their high thermal conductivity. In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experi...
Thermal stresses in elastic-plastic tubes with temperature-dependent mechanical and thermal properties
Orcan, Y; Eraslan, Ahmet Nedim (2001-11-01)
The thermoelastic-plastic deformations of internal heat-generating tubes are investigated by considering the temperature dependence of the thermal conductivity coefficient, Young's modulus, the coefficient of thermal expansion, and the yield limit of the material. A model describing the elastic-plastic behavior of the tube is developed. The model consists of a system of two second-order ordinary differential equations and a first-order ordinary differential equation involving nonlinear temperature-dependent...
EXPERIMENTAL ANALYSIS AND TRANSIENT SIMULATION OF HEAT TRANSFER INSIDE THE FINNED TUBE ADSORBENT BED OF A THERMAL WAVE CYCLE
ÇAĞLAR, AHMET; Yamali, Cemil (Begell House, 2019-01-01)
Heat transfer enhancement inside the adsorbent bed of a thermal wave adsorption cooling cycle is investigated both experimentally and theoretically. Various adsorbent materials are tested using a finned tube adsorbent bed for the thermal wave cycle. The mathematical model is well defined, including a 2-D coupled heat and mass transfer analysis. This study presents the effects of heat transfer fluid velocity, regeneration temperature, condenser pressure, and particle diameter on the heat transfer enhancement...
Numerical analysis of transient laminar forced convection of nanofluids in circular ducts
Sert, Ismail Ozan; Sezer Uzol, Nilay; Kakaç, Sadik (2013-10-01)
In this study, forced convection heat transfer characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydro-dynamically fully-developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analy...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Tarı, “Numerical Investigation of Various Approaches to Avoid Natural Convection Instabilities Inside the Channels of Horizontal Plate Fin Heat Sinks,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36108.