Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Investigation of silver-induced crystallization of germanium thin films fabricated on different substrates
Date
2015-06-01
Author
Kabacelik, Ismail
KULAKCI, MUSTAFA
Turan, Raşit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
219
views
0
downloads
Cite This
Silver-induced crystallizations of amorphous germanium (alpha-Ge) thin films were fabricated through electron beam evaporation on crystalline silicon (c-Si) (100), aluminum-doped zinc oxide (AZO), and glass substrates at room temperature. The solid-phase crystallization (SPC) of alpha-Ge films was investigated for various post-annealing temperatures between 300 and 500 degrees C for 60 min. Two crystallization approaches were compared: SPC and metal-induced crystallization (MIC). The structural properties of the Ge thin films fabricated by both methods were studied with Raman and X-ray diffraction (XRD) measurements. The Raman and XRD results indicated that the metal-induced crystallization of the Ge thin films yielded crystallization at temperatures considerably lower than those used in the SPC technique. As expected, the amount of crystallization and the quality of the films were improved with increased annealing temperatures. It was also demonstrated that the same material properties could be obtained using different substrates without any significant variation.
Subject Keywords
Characterization
,
Solid phase crystallization
,
Polycrystalline films
,
Germanium
URI
https://hdl.handle.net/11511/36142
Journal
JOURNAL OF CRYSTAL GROWTH
DOI
https://doi.org/10.1016/j.jcrysgro.2015.02.078
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Structural and electrical analysis of poly-Ge films fabricated by e-beam evaporation for optoelectronic applications
Kabacelik, Ismail; KULAKCI, MUSTAFA; Turan, Raşit (2016-12-01)
We have investigated the relationship between structural and electrical properties of Ge thin films deposited on single crystal silicon (100) substrates by electron beam evaporation at room temperature. Post-thermal annealing was applied to obtain poly-crystalline Ge thin films. The structural effects of the annealing temperature and annealing time on the crystallization of Ge films were analyzed using Raman and X-ray diffraction measurements. Raman and X-ray diffraction spectra revealed a structural evolut...
Investigation of plasma deposited hexagonal boron nitride thin films
Anutgan, Mustafa; Katırcıoğlu, Bayram; Department of Physics (2007)
Hexagonal boron nitride (h-BN) thin films are deposited by plasma enhanced chemical vapor deposition (PECVD). Effects of heat treatment and source gases on the structure and physical properties are investigated. Chemical bonding is analyzed in comparison with the better understood isoelectronic carbon compound, graphite. It seems that the basic difference between h-BN and graphite arises from the different electronegativities of boron and nitrogen atoms. Optical absorptions in UV-visible range for crystalli...
Studies on device properties of an n-AgIn5Se8/p-Si heterojunction diode
KALELİ, Murat; Parlak, Mehmet; Ercelebi, C. (2011-10-12)
In this study, polycrystalline thin films of ternary AgIn5Se8 compounds with n-type conductivity were deposited on p-type Si substrates from the powder of a Ag3In5Se9 single crystal by a thermal evaporation technique. Transport and photo-transport properties of the In/n-AgIn5Se8/p-Si/Al sandwich structure were investigated by analyzing temperature-dependent dc current-voltage (I-V), and photo-response measurements carried out in the temperature range of 200-360 K. In order to obtain the series resistance (R...
Characterization and enhancement of IR optical and tribological properties of DLC films synthesized by RF-PECVD
Taburoğlu, Vahit Eren; Özenbaş, Ahmet Macit; Akata Kurç, Burcu; Department of Micro and Nanotechnology (2017)
This thesis analyzes the hydrogenated amorphous diamond like carbon (a-DLC) films coated on aluminum substrates by the technique of plasma enhanced chemical vapor deposition (PECVD). Effects of film thickness, hydrogen content and RF power on the tribology, optical characteristics and structure are observed and studied in detail. DLC films have compressive intrinsic stresses by default. Surface topography revealed by an interferometer shows that too low/high compressive stress is detrimental to the film. In...
Study on the Structural and Electrical Properties of Sequentially Deposited Ag-Ga-In-Te Thin Films
Coskun, EMRE; Gullu, H. H.; Parlak, Mehmet; Ercelebi, C. (2015-02-01)
The structural properties and electrical conduction mechanisms of Ag-Ga-In-Te thin films deposited by a combination of e-beam and thermal evaporation methods were studied for various annealing temperatures. Structural analysis showed the existence of InTe and InTe binary phases at the early stage of crystallization and monophase of AgGaInTe with the main orientation along (112) direction following the post-annealing at 400 C. The effects of the structural changes on electrical properties and temperature dep...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Kabacelik, M. KULAKCI, and R. Turan, “Investigation of silver-induced crystallization of germanium thin films fabricated on different substrates,”
JOURNAL OF CRYSTAL GROWTH
, pp. 7–11, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36142.