Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
"Fairy Chimney'-Shaped Tandem Metamaterials as Double Resonance SERS Substrates
Download
index.pdf
Date
2013-02-25
Author
CİNEL, NEVAL AYŞEGÜL
Buetuen, Serkan
Ertaş, Gülay
ÖZBAY, Ekmel
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
137
views
0
downloads
Cite This
A highly tunable design for obtaining double resonance substrates to be used in surface-enhanced Raman spectroscopy is proposed. Tandem truncated nanocones composed of Au-SiO2-Au layers are designed, simulated and fabricated to obtain resonances at laser excitation and Stokes frequencies. Surface-enhanced Raman scattering experiments are conducted to compare the enhancements obtained from double resonance substrates to those obtained from single resonance gold truncated nanocones. The best enhancement factor obtained using the new design is 3.86 x 107. The resultant tandem structures are named after Fairy Chimneys rock formation in Cappadocia, Turkey.
Subject Keywords
Localized surface plasmons
,
Surface enhanced raman scattering
,
Double resonances
,
Au-SiO2-Au
,
Tandem nanocones
URI
https://hdl.handle.net/11511/36173
Journal
SMALL
DOI
https://doi.org/10.1002/smll.201201286
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Laser induced periodic surface structuring for surface enhanced raman spectroscopy
Özkarslıgil, Zeynep Tuğçe; Bek, Alpan; Department of Physics (2020)
In this study, our aim is to fabricate and characterize efficient substrates of surface enhanced Raman spectroscopy (SERS) utilizing the field enhancement due to hot spots made by recently developed method of laser induced periodic surface structuring (LIPSS). LIPSS is a cost-effective technique for rapid processing of almost any materials compared to conventional lithography methods. Coating of a thin silver film on LIPSS applied substrate surface provides to observe the localized surface plasmon effect fo...
A Solution to the Adhesion Problem of Oxide Thin Films on Zinc Selenide Optical Substrates
Cosar, M. B.; Aydogdu, G. H.; Batman, H.; Ozhan, A. E. S. (2016-05-13)
Zinc selenide optical substrates have high transparency within the 0.5- to 14.0-mu m wavelength range. This makes them an attractive candidate for multiband imaging applications in optical components. In order to minimize reflection loss in visible, near-infrared, and mid-infrared applications, zinc selenide lenses are coated with multi-layered oxide thin films by physical vapor deposition method or ion beam deposition. In this study, a four-layer anti-reflective filter at 1.064 gm and between 3.6 and 4.9 g...
A feasibility study for controlling self-organized production of plasmonic enhancement interfaces for solar cells
Borra, Mona Zolfaghari; Gullu, Seda Kayra; Es, Fırat; Demircioğlu, Olgu; Günöven, Mete; Turan, Raşit; Bek, Alpan (Elsevier BV, 2014-11-01)
The decoration of metal nanoparticles (MNPs) by the self-organized mechanism of dewetting is utilized as a suitable method for plasmonic interface integration to large area full-scale solar cell (SC) devices. Reflection measurements are performed on both flat and textured silicon (Si) SCs in order to investigate the local plasmonic resonances of the MNPs. The effects of particle size and thickness of silicon nitride (Si3N4)anti-reflection coating layer are investigated by reflection measurements and the shi...
FABRICATION AND CHARACTERIZATION OF SERS SUBSTRATES VIA LASER INDUCED PHOTOCHEMICAL SURFACE ROUGHENING OF SILICON
Akbıyık, Alp; Bek, Alpan; Department of Physics (2022-6-10)
In this thesis, Surface-Enhanced Raman Spectroscopy (SERS) substrates are fabricated using laser assisted chemical etching of silicon as a surface nanostructuring technique. As a novel method of control over the structuring parameters, the incident laser illumination is spatially modified via a Digital Micromirror Device (DMD) that enable fast and uniform fabrication of complex structures. Onto the photochemically nanostructured silicon surfaces, silver and gold films are deposited by thermal evaporation or...
Direct epoxidation of propylene to propylene oxide on various catalytic systems: A combinatorial micro-reactor study
Kalyoncu, Sule; Duzenli, Derya; Önal, Işık; Seubsai, Anusorn; Noon, Daniel; Senkan, Selim (2015-02-10)
A combinatorial approach is used to investigate several bimetallic catalytic systems and the promoter effect on these catalysts to develop highly active and selective catalysts for direct epoxidation of propylene to propylene oxide (PO) using molecular oxygen. 2%Cu/5%Ru/c-SiO2 catalyst yielded the highest performance with high propylene conversion and PO selectivity among the bimetallic catalytic systems including silver, ruthenium, manganese and copper metals. On the other hand, the most effective catalyst...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. A. CİNEL, S. Buetuen, G. Ertaş, and E. ÖZBAY, ““Fairy Chimney’-Shaped Tandem Metamaterials as Double Resonance SERS Substrates,”
SMALL
, pp. 531–537, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36173.