Three-Dimensional Finite Element Modeling for Spudcan Penetration into a Clayey Seabed

2017-03-15
In this study the penetration of spudcan foundation for "jack-up rig" type offshore oil platform into a uniform clayey seabed is investigated with three-dimensional finite element modeling (Abaqus 6.14) using Coupled Eulerian Lagrangian method that can handle large deformation problems. One of the goals of this study is to compare the penetration-bearing resistance behavior of spudcan obtained by numerical study with the method suggested in InSafeJIP design guideline. For the spudcan geometry and soil properties used in this study, based on the three dimensional finite element analyses, the required penetration depth for a target bearing capacity of spudcan is less than that required by analytical method in InSafeJIP guideline. The second goal of the study is to explore the effects of some geometrical and soil variables on spudcan bearing resistance-penetration behavior. The variables in this study are spudcan diameter (7.5 to 15 m), the surface roughness of spudcan (roughness coefficient of 0 to 1.0) and undrained shear strength of clay (20 to 80 kPa). Understanding the relations between the factors and penetration behavior may help in future studies on enhanced and economical design of spudcans.

Suggestions

Üç Boyutlu Sonlu Elemanlar Yöntemi ile Açık Deniz Platform Temellerinin Killi Zemine Penetrasyonu
Emren, Volkan; Huvaj Sarıhan, Nejan; Tuncay, Kağan (null; 2016-10-13)
In this study the penetration of spudcan foundation for “jack-up rig” type offshore oil platform into a uniform clayey seabed is investigated with three-dimensional finite element modeling (Abaqus 6.14) using coupled Eulerian-Lagrangian method that can handle large strain problems. One of the goals of this study is to compare the penetration-bearing resistance behavior of spudcan obtained by numerical study with the method suggested in InSafeJIP design guideline. For the spudcan geometry and soil properties...
Advanced workflow for multi-well tracer test analysis in a geothermal reservoir
Bayer, Peter; AKIN, TAYLAN; Akın, Serhat (2022-05-01)
Interpretation of tracer tests in geothermal reservoirs is carried out by fitting the measured data either with simplified two-dimensional (2-D) analytical solutions or with complex numerical models. Available analytical solutions commonly only describe isotropic conditions in 1-D or 2-D, which is generally unsatisfactory to construct realistic reservoir models. Moreover, due to the large spatial and temporal scale of a tracer test in deep reservoirs, the concentration levels measured in the field are relat...
A methodology for lining design of circular mine shafts in different rock masses
Öztürk, Hasan (2016-09-01)
In this study, the finite element numerical modelling of 2D shaft sections in a Hoek-Brown medium are carried out in a non-hydrostatic stress state in an attempt to predict pressures developing around mine shafts. An iterative process of applying support pressure until observing no failure zone around the shaft is used to simulate the required lining support pressure for different shaft models. Later, regression analysis is carried out to find a generic shaft pressure equation representing the rock mass and...
Two approaches to creating a turbulence model with increased temporal accuracy
Aggul, Mustafa; Kaya Merdan, Songül; Labovsky, Alexander E. (2019-10-01)
When modeling a turbulent fluid flow, an Approximate Deconvolution Model (ADM) is sometimes chosen - in particular, due to the high order spatial accuracy. A method has been presented in [1], that demonstrates an approach to increase the temporal accuracy of the ADM, by combining it with the Deferred Correction method (DCM). The resulting model, DC-ADM, is at least second order accurate in both space and time, and theoretically an arbitrarily high order of accuracy is achievable, provided that enough comput...
A 3-D radiation model for non-grey gases
Selçuk, Nevin (2009-02-01)
A three-dimensional radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) coupled with spectral line-based weighted sum of grey gases (SLW) model for radiative heat transfer in non-grey absorbing-emitting media for use in conjunction with a computational fluid dynamics (CFD) code based on the same approach was developed. The code was applied to three test problems: two containing isothermal homogenous/non-homogenous water vapor and one non-isothermal water vapor/carbon di...
Citation Formats
V. Emren, N. Huvaj Sarıhan, and K. Tuncay, “Three-Dimensional Finite Element Modeling for Spudcan Penetration into a Clayey Seabed,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36273.