Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical modelling and finite element analysis of stress wave propagation for ultrasonic pulse velocity testing of concrete
Date
2006-12-01
Author
Yaman, İsmail Özgür
Aktan, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
276
views
0
downloads
Cite This
Stress wave propagation through concrete is simulated by finite element analysis. The concrete medium is modeled as a homogeneous material with smeared properties to investigate and establish the suitable finite element analysis method (explicit versus implicit) and analysis parameters (element size, and solution time increment) also suitable for rigorous investigation. In the next step, finite element analysis model of the medium is developed using a digital image processing technique, which distinguishes the mortar and aggregate phases of concrete. The mortar and aggregate phase topologies are, then, directly mapped to the finite element mesh to form a heterogeneous concrete model. The heterogeneous concrete model is then used to simulate wave propagation. The veracity of the model is demonstrated by evaluating the intrinsic parameters of nondestructive ultrasonic pulse velocity testing of concrete. Quantitative relationships between aggregate size and testing frequency for nondestructive testing are presented.
Subject Keywords
Concrete
,
Nondestructive Testing
,
Ultrasonic Pulse Velocity
,
Finite Element Analysis
,
Explicit Dynamic Analysis
,
Digital Image Processing
,
Heterogeneous Model
URI
https://hdl.handle.net/11511/36330
Journal
COMPUTERS AND CONCRETE
DOI
https://doi.org/10.12989/cac.2006.3.6.423
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Modeling of the nonlinear behavior of steel framed structures with semi rigid connections
Sarıtaş, Afşin; Özel, Halil Fırat (null; 2015-07-21)
A mixed formulation frame finite element with internal semi-rigid connections is presented for the nonlinear analysis of steel structures. Proposed element provides accurate responses for spread of inelasticity along element length by monitoring the nonlinear responses of several crosssections, where spread of inelasticity over each section is captured with fiber discretization. Each material point on the section considers inelastic coupling between normal stress and shear stress. The formulation of the ele...
Numerical Modeling of Electromagnetic Scattering from Periodic Structures by Transformation Electromagnetics
ÖZGÜN, ÖZLEM; Kuzuoğlu, Mustafa (2016-09-22)
The transformation electromagnetics is applied to the modeling of electromagnetic scattering from periodic structures in conjunction with the finite element method with periodic boundary conditions. In a unit cell of periodic structure, a uniform mesh is used over a flat surface and the arbitrary periodic surface is modeled by a coordinate transformation. The major advantage of this approach is that arbitrary geometries can be handled by using a single and simple mesh. Therefore, repeated computations (such...
Computer Solutions of Plane Strain Axisymmetric Thermomechanical Problems
Eraslan, Ahmet Nedim (2005-08-01)
A simple computational model is developed to estimate elastic, elastic-plastic, fully plastic, and residual stress states in generalized plane strain axisymmetric structures considering temperature dependent physical properties as well as nonlinear isotropic strain hardening. Using the von Mises yield criterion, total deformation theory and a Swift-type nonlinear hardening law, a single nonlinear differential equation governing thermoelastoplastic behavior is obtained. A shooting technique using Newton iter...
Nonlinear Finite Element Analysis Versus Ex Vivo Strain Gauge Measurements on Immediately Loaded Implants
Eser, Atilim; AKÇA, KIVANÇ; Eckert, Steven; Cehreli, Murat Cavit (2009-05-01)
Purpose: To evaluate the level of agreement between nonlinear finite element stress analysis (NL-FEA) and ex vivo strain gauge analysis (EV-SGA) on immediately loaded implants. Materials and Methods: Four 4.1-mm-diameter, 12-mm-long implants were placed bilaterally into the lateral and first premolar regions of completely edentulous maxillae of four human cadavers. Two-element 90-degree rosette strain gauges were bonded to the labial cortical bone around the implants, and 100 N maximal load was applied over...
Numerical simulation of dynamic shear wall tests: A benchmark study
Kazaz, I; Yakut, Ahmet; Gulkan, P (2006-03-01)
This article presents the numerical simulation of a 1/3-scale, 5-story reinforced concrete load bearing structural wall model subjected to seismic excitations in the context of IAEA benchmark shaking table experiment conducted in laboratories of CEA in Saclay, France. A series of non-linear time history analyses were performed to simulate the damage experienced and response quantities measured for the specimen tested on a shaking table. The mock-up was subjected to a series of artificial and natural earthqu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Ö. Yaman and H. Aktan, “Numerical modelling and finite element analysis of stress wave propagation for ultrasonic pulse velocity testing of concrete,”
COMPUTERS AND CONCRETE
, pp. 423–437, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36330.