Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An automatically mode-matched MEMS gyroscope with 50 Hz bandwidth
Date
2012-02-02
Author
Sonmezoglu, S.
Alper, S.E.
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
175
views
0
downloads
Cite This
This paper presents the architecture and experimental verification of an automatic mode matching system that uses the phase relationship between the residual quadrature and drive signals in a gyroscope to accomplish and maintain the frequency matching condition. The system also allows controlling the system bandwidth by adjusting the closed loop controller parameters of the sense mode. This study experimentally examines the angle random walk (ARW) and bias instability performances of the fully decoupled MEMS gyroscopes under mismatched (similar to 100Hz) and mode-matched conditions. Moreover, it has been experimentally shown that the performance of the studied MEMS gyroscopes is improved up to 2.4 times in bias instability and 1.7 times in ARW with 50 Hz system bandwidth under the mode-matched condition reaching down to a bias instability of 0.83 degrees/hr and an ARW of 0.026 degrees/root hr.
URI
https://hdl.handle.net/11511/36590
DOI
https://doi.org/10.1109/memsys.2012.6170231
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
An Automatically Mode-Matched MEMS Gyroscope With Wide and Tunable Bandwidth
Sonmezoglu, Soner; Alper, Said Emre; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2014-04-01)
This paper presents the architecture and experimental verification of the automatic mode-matching system that uses the phase relationship between the residual quadrature and drive signals in a gyroscope to achieve and maintain matched resonance mode frequencies. The system also allows adjusting the system bandwidth with the aid of the proportional-integral controller parameters of the sense-mode force-feedback controller, independently from the mechanical sensor bandwidth. This paper experimentally examines...
A High performance automatic mode-matched MEMS gyroscope
Sönmezoğlu, Soner; Demir, Şimşek; Department of Electrical and Electronics Engineering (2012)
This thesis, for the first time in the literature, presents an automatic mode-matching system that uses the phase relationships between the residual quadrature and drive signals in a gyroscope to achieve and maintain the frequency matching condition, and also the system allows controlling the system bandwidth by adjusting the closed loop parameters of the sense mode controller, independently from the mechanical sensor bandwidth. There are two mode-matching methods, using the proposed mode-matching system, p...
A symmetric surface micromachined gyroscope with decoupled oscillation modes
Alper, Said Emre; Akın, Tayfun (2001-06-14)
This paper reports a new symmetric gyroscope structure that allows not only matched resonant frequencies for the drive and sense vibration modes for better resolution, but also decoupled drive and sense oscillation modes for preventing unstable operation due to mechanical coupling. The symmetry and decoupling features are achieved at the same time with a new suspension beam design. The gyroscope structure is designed using a standard three-layer polysilicon surface micromachining process (MUMPs) and simulat...
An 80x80 Microbolometer Type Thermal Imaging Sensor using the LWIR-Band CMOS Infrared (CIR) Technology
Tankut, Firat; Cologlu, Mustafa H.; Askar, Hidir; Ozturk, Hande; Dumanli, Hilal K.; Oruc, Feyza; Tilkioglu, Bilge; Ugur, Beril; Akar, Orhan Sevket; Tepegoz, Murat; Akın, Tayfun (2017-04-13)
This paper introduces an 80x80 microbolometer array with a 35 mu m pixel pitch operating in the 8-12 aem wavelength range, where the detector is fabricated with the LWIR-band CMOS infrared technology, shortly named as CIR, which is a novel microbolometer implementation technique developed to reduce the detector cost in order to enable the use of microbolometer type sensors in high volume markets, such as the consumer market and IoT. Unlike the widely used conventional surface micromachined microbolometer ap...
A bulk-micromachined fully-differential MEMS accelerometer with interdigitated fingers
Aydin, Osman; Akın, Tayfun (2012-10-31)
This paper proposes a novel bulk-micromachined MEMS accelerometer employing interdigitated sense fingers that provide a fully-differential (FD) signal interface, where the accelerometer can be fabricated by a modified Silicon-on-Glass (M-SOG) process utilizing a <;111>; Silicon-on-Insulator (SOI) wafer. The accelerometer combines the feasibility of fabricating large mass and high aspect ratio structures using bulk-micromachining together with the high sensitive interdigitated sense finger triplets that are ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Sonmezoglu, S. E. Alper, and T. Akın, “An automatically mode-matched MEMS gyroscope with 50 Hz bandwidth,” 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36590.