Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Core/shell copper nanowire networks for transparent thin film heaters
Date
2019-08-09
Author
Tigan, Dogancan
Genlik, Sevim Polat
İmer, Muhsine Bilge
Ünalan, Hüsnü Emrah
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
250
views
0
downloads
Cite This
Copper nanowires (Cu NWs) appear as the strongest alternative to silver nanowires (Ag NWs) in transparent conductors. Cu NWs; however, are more prone to oxidation compared to Ag NWs even at room temperature. This problem becomes more severe when Cu NWs are used as transparent thin film heaters (TTFHs). In this work, we have utilized ALD deposited zinc oxide (ZnO) shell layers, and provide a comparison with typically used aluminum oxide (Al2O3) shell layers to improve the TTFH performance. While Cu NW network TTFHs barely withstood temperatures around 100 degrees C, critical thickness of ALD deposited Al2O3 and ZnO layers were determined to find out TTFH limits. Maximum stable and reproducible temperatures of 273 degrees C and 204 degrees C were obtained for Al2O3 and ZnO deposited Cu NW network TTFHs, respectively. An extensive parametric study on the NW density and oxide type in conjunction with the electrical conductivity and optical transmittance was conducted. A remarkably high heating rate of 14 degrees C s(-1) was obtained from the fabricated core/shell networks with improved oxidation stability under ambient and high humidity conditions. Finally, these high performance core/shell Cu NW network TTFHs were utilized as efficient defrosters.
Subject Keywords
Mechanical Engineering
,
Electrical and Electronic Engineering
,
General Materials Science
,
Mechanics of Materials
,
Bioengineering
,
General Chemistry
URI
https://hdl.handle.net/11511/36600
Journal
NANOTECHNOLOGY
DOI
https://doi.org/10.1088/1361-6528/ab19c6
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Optimization of silver nanowire networks for polymer light emitting diode electrodes
Coskun, Sahin; Ates, Elif Selen; Ünalan, Hüsnü Emrah (IOP Publishing, 2013-03-29)
Silver nanowire (Ag NW) networks are promising candidates for replacement of indium tin oxide (ITO). However, transparent conductors based on Ag NW networks often suffer from 'haziness' resulting from surface roughness. Thus, in addition to achieving suitable transparency and conductivity, surface roughness must be minimized if realistic implementation of Ag NW networks as transparent conductors is to be realized. In this work, we have reduced the surface roughness of Ag NW networks to below 5 nm as compare...
High-performance, bare silver nanowire network transparent heaters
Ergun, Orcun; Coskun, Sahin; Yusufoglu, Yusuf; Ünalan, Hüsnü Emrah (IOP Publishing, 2016-11-04)
Silver nanowire (Ag NW) networks are one of the most promising candidates for the replacement of indium tin oxide (ITO) thin films in many different applications. Recently, Ag-NW-based transparent heaters (THs) showed excellent heating performance. In order to overcome the instability issues of Ag NW networks, researchers have offered different hybrid structures. However, these approaches not only require extra processing, but also decrease the optical performance of Ag NW networks. So, it is important to i...
Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices
AURANG, Pantea; Turan, Raşit; Ünalan, Hüsnü Emrah (IOP Publishing, 2017-10-06)
Reducing silicon ( Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to in...
Silicon nanowire-silver indium selenide heterojunction photodiodes
KULAKCI, Mustafa; ÇOLAKOĞLU, Tahir; OZDEMİR, Baris; Parlak, Mehmet; Ünalan, Hüsnü Emrah; Turan, Raşit (IOP Publishing, 2013-09-20)
Structural and optoelectronic properties of silicon (Si) nanowire-silver indium selenide (AgInSe2) thin film heterojunctions were investigated. The metal-assisted etching method was employed to fabricate vertically aligned Si nanowire arrays. Stoichiometric AgInSe2 films were then deposited onto the nanowires using co-sputtering and sequential selenization techniques. It was demonstrated that the three-dimensional interface between the Si nanowire arrays and the AgInSe2 thin film significantly improved the ...
Fabrication of SiO2-stacked diamond membranes and their characteristics for microelectromechanical applications
Bayram, Barış (Elsevier BV, 2011-04-01)
Diamond is a promising microelectromechanical systems (MEMS) material due to its high Young's Modulus and very large thermal conductivity. In this work, ultrananocrystalline diamond was stacked between silicon dioxide to form thermally-stable and robust membranes. These SiO2-stacked diamond layers were processed into MEMS-compatible membranes. For comparison, membranes composed of only SiO2 were fabricated as well. The structural characteristics of these membranes are compared and analyzed for membranes of ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Tigan, S. P. Genlik, M. B. İmer, and H. E. Ünalan, “Core/shell copper nanowire networks for transparent thin film heaters,”
NANOTECHNOLOGY
, pp. 0–0, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36600.