Fire Retardant Properties of Intumescent Polypropylene Composites Filled With Calcium Carbonate

Isitman, Nihat Ali
Dogan, Mehmet
Bayramli, ERDAL
Kaynak, Cevdet
This study was aimed to investigate the influence of calcium carbonate (CaCO(3)), a widely used filler, on the fire retardancy of intumescent polypropylene composites. Two intumescent systems based on (1) mixture of ammonium polyphosphate (APP) and pentaerythritol and (2) surface-modified APP (m-APP) were examined. In terms of steady heat release rate, total heat evolved, and fire growth index determined by mass loss calorimetry, m-APP performed markedly superior to APP-pentaerythritol. The presence of CaCO(3) in both intumescent formulations caused significant losses in fire retardant performance assessed by mass loss calorimetry, limiting oxygen index and UL-94 tests. Peak rates of heat release and mass loss during combustion, and total heat evolved on combustion were increased, whereas time to ignition was decreased. Characterization of fire residues ascribed the mechanism of deterioration in fire retardancy to the formation of porous and nonexpanded crystalline calcium phosphate/CaCO(3) residues during combustion rather than the amorphous protective intumescent chars formed in the absence of CaCO(3). POLYm. ENG. SCI., 51:875-883, 2011. (C) 2011 Society of Plastics Engineers


Gündüz, Güngör; OZTURK, S (Informa UK Limited, 1994-01-01)
Flame retardance properties of 1,3 propylene glycol based unsaturated polyester containing 40% styrene and 20% acrylonitrile were investigated. The polyester with 12% Br content is self-extinguishing while others with lower bromine contents burn slowly. The high decrease in mechanical strength due to the presence of bromine is highly compensated by acrylonitrile.
Contribution of Nanoclays to the Performance of Traditional Flame Retardants in ABS
Ozkaraca, Ayse Cagil; Kaynak, Cevdet (Wiley, 2012-03-01)
The purpose of this study was to investigate contribution of nanoclays to the flame retardancy performance of a traditional brominated flame retardant compound with various combinations of antimony trioxide and zinc borate. The matrix polymer acrylonitrile butadiene styrene (ABS) was compounded by melt mixing in a laboratory size twin-screw extruder. X-ray diffraction analysis and transmission electron microscopy revealed that nanoclay silicate layers were mainly intercalated with certain level of exfoliati...
Polystyrene-organoclay nanocomposites prepared by melt intercalation, in situ, and Masterbatch methods
Yılmazer, Ülkü; Ozden, G (Wiley, 2006-06-01)
In this study, polystyrene (PS)/montmorillonite nanocomposites were prepared by melt intercalation, in situ polymerization, and masterbatch methods. In the masterbatch method, as the first step, a high clay content composite of PS-organoclay (masterbatch) was prepared by in situ polymerization, and then the prepared masterbatch was diluted to desired compositions with commercial PS in a twin-screw extruder. The structure and mechanical properties of the nanocomposites were examined. X-ray diffraction (XRD) ...
Influence of Zinc Oxide on Thermoplastic Elastomer-Based Composites: Synthesis, Processing, Structural, and Thermal Characterization
ÇELEBİ, HANDE; Bayram, Göknur; DOĞAN, AYDIN (Wiley, 2016-08-01)
It was aimed to investigate how thermal conductivity and stability properties of synthesized thermoplastic elastomers were influenced by zinc oxide (ZnO) additives which differed in size and surface treatment. ZnO particles were prepared by the homogeneous precipitation method by mixing aqueous solutions of hexamethylenetetramine (HMT) and zinc nitrate. The obtained particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Poly(v...
Poly(ethylene terephthalate)/Carbon Nanotube Composites Prepared With Chemically Treated Carbon Nanotubes
Yesil, Sertan; Bayram, Göknur (Wiley, 2011-07-01)
Surfaces of multiwalled carbon nanotubes (CNT) were functionalized by treatment with strong acid mixture (purification) followed by modification with sodium dodecyl sulfate, poly(ethylene glycol) (PEG), and diglycidyl ether of Bisphenol A (DGEBA). Poly(ethylene terephthalate) (PET)-based conductive polymer composites were prepared by using these CNT by means of melt mixing with a twin screw extruder. Amount of carboxylic acid groups on the CNT surface increased after acid treatment but decreased with surfac...
Citation Formats
N. A. Isitman, M. Dogan, E. Bayramli, and C. Kaynak, “Fire Retardant Properties of Intumescent Polypropylene Composites Filled With Calcium Carbonate,” POLYMER ENGINEERING AND SCIENCE, pp. 875–883, 2011, Accessed: 00, 2020. [Online]. Available: