A Pilot Study of Joint Stability at the Zirconium or Titanium Abutment/Titanium Implant Interface

Cavusoglu, Yeliz
Gürbüz, Rıza
Purpose: To compare the interfaces of loaded and unloaded zirconium and titanium abutments with titanium implants using scanning electron microscopy (SEM). Materials and Methods: Zirconium and titanium abutments (n = 5 per group; four test and one control) were torque-tightened into titanium implants secured into metal blocks, and computer-aided design/computer-assisted manufacture-based zirconium oxide copings were fabricated and cemented to the abutments with temporary resin-based cement. Specimens of each restoration were subjected to cyclic axial and lateral loading of 30 N at 2 Hz for 500,000 cycles using a servohydraulic test system; control specimens were left unloaded. Then, the abutment/implant assemblies were embedded in acrylic resin, sectioned longitudinally along the midline, and inspected under SEM with x-ray microanalysis. Results: Loosening or fracture of the copings and implant components was not observed after dynamic loading in both groups. SEM and x-ray microanalysis revealed unexpected microleakage of acrylic resin at the interface. Acrylic resin in the implants tightened to the titanium abutments was limited to the cervical part, and the components displayed scratched and smashed regions, suggesting slight deformation of the implant neck. Micro leakage and pooling of acrylic resin were observed approaching the screw joint in loaded implants tightened to zirconia abutments, and the amount of microleakage was greater than in the unloaded control specimens, which had a larger microgap than the titanium abutment/titanium implant interface. Loaded zirconia abutments were associated with wear, scratches, and, in one sample, chipping. Conclusions: Zirconium abutment/titanium implant interface may be susceptible to wear of the abutment coupled with deformation of the implant neck greater than that associated with the conventional titanium abutment/titanium implant interface under dynamic loading.


A feasibility study for controlling self-organized production of plasmonic enhancement interfaces for solar cells
Borra, Mona Zolfaghari; Gullu, Seda Kayra; Es, Fırat; Demircioğlu, Olgu; Günöven, Mete; Turan, Raşit; Bek, Alpan (Elsevier BV, 2014-11-01)
The decoration of metal nanoparticles (MNPs) by the self-organized mechanism of dewetting is utilized as a suitable method for plasmonic interface integration to large area full-scale solar cell (SC) devices. Reflection measurements are performed on both flat and textured silicon (Si) SCs in order to investigate the local plasmonic resonances of the MNPs. The effects of particle size and thickness of silicon nitride (Si3N4)anti-reflection coating layer are investigated by reflection measurements and the shi...
An Analysis for the Broad-Band Absorption Enhancement Using Plasmonic Structures on Uncooled Infrared Detector Pixels
Lulec, Sevil Z.; Küçük, Serhat; Battal, Enes; Okyay, Ali K.; Tanrikulu, M. Yusuf; Akın, Tayfun (2012-04-27)
This paper introduces an analysis on the absorption enhancement in uncooled infrared pixels using resonant plasmon modes in metal structures, and it reports, for the first time in literature, broad-band absorption enhancement using integrated plasmonic structures in microbolometers for unpolarized long-wave IR detection. Different plasmonic structures are designed and simulated on a stack of layers, namely gold, polyimide, and silicon nitride in order to enhance absorption at the long-wave infrared. The sim...
A procedure to embed fibre Bragg grating strain sensors into GFRP sandwich structures
Dawood, T. A.; Shenoi, R. A.; Şahin, Melin (Elsevier BV, 2007-01-01)
Embedding FBG strain sensors within a GFRP sandwich composite material allows early detection of internal defects. However, the sensors need to survive the manufacturing process to provide this capability. Vacuum infusion is commonly used to manufacture GFRP sandwich composite materials but, it needs to be modified to accommodate the embedding process. A stage by stage procedure is demonstrated here to embed FBG strain sensors between the skin-core interface of a GFRP sandwich beam specimen using the vacuum...
Combined effects of ALS and SLS on Al2O3 reinforced composite nickel coatings
Yılmaz, Olgun; Karakaya, I. (Informa UK Limited, 2020-05-03)
The mechanical and tribological properties of electrochemical coatings can be enhanced by the embedded second phase particles to nickel matrix. Two different anionic surfactants sodium dodecyl sulfate and ammonium lignosulfonate were used together to adjust the wetting conditions and provide the suspension of Al2O3 particles in a nickel sulfamate electrolyte in this study. The effects of current density and amounts of the two surfactants on wear rate, coefficient of friction, and hardness were studied. It w...
Dynamic crack growth along a polymer composite-Homalite interface
Çöker, Demirkan; Needleman, A. (2003-03-01)
Dynamic crack growth along the interface of a fiber-reinforced polymer composite-Homalite bimaterial subjected to impact shear loading is investigated experimentally and numerically. In the experiments, the polymer composite-Homalite specimens are impacted with a projectile causing shear dominated interfacial cracks to initiate and subsequently grow along the interface at speeds faster than the shear wave speed of Homalite. Crack growth is observed using dynamic photoelasticity in conjunction with high-spee...
Citation Formats
Y. Cavusoglu, K. AKÇA, R. Gürbüz, and M. C. ÇEHRELİ, “A Pilot Study of Joint Stability at the Zirconium or Titanium Abutment/Titanium Implant Interface,” INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS, pp. 338–343, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36886.