Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
RG-Trees: Trajectory-Free Feedback Motion Planning Using Sparse Random Reference Governor Trees
Date
2018-10-05
Author
Gölbol, Ferhat
Ankaralı, Mustafa Mert
Saranlı, Afşar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
238
views
0
downloads
Cite This
Sampling based methods resulted in feasible and effective motion planning algorithms for high dimensional configuration spaces and complex environments. A vast majority of such algorithms as well as their application rely on generating a set of open-loop trajectories first, which are then tracked by feedback control policies. However, controlling a dynamic robot to follow the planned path, while respecting the spatial constraints originating from the obstacles is still a challenging problem. There are some studies which combine statistical sampling techniques and feedback control methods which address this challenge using different approaches. From the feedback control theory perspective, Reference Governors proved to be a useful framework for constraint enforcement. Very recently, Arslan and Koditschek (2017) introduced a feedback motion planner that utilizes Reference Governors that provably solves the motion planning problem in simplified spherical worlds. In this context, here we propose a “trajectory-free” novel feedback motion planning algorithm which combines the two ideas: random trees and reference governors. Random tree part of the algorithm generates a collision-free region as a set of connected simple polygonal regions. Then, reference governor part navigates the dynamic robot from one region to the adjacent region in the tree structure, ensuring it stays inside the current region and asymptotically reaches to the connected region. Eventually, our algorithm robustly routes the robot from the start location to the goal location without collision. We demonstrate the validity and feasibility of the algorithm on simulation studies.
Subject Keywords
Robots
,
Navigation
,
Aerospace electronics
,
Dynamics
,
Collision avoidance
,
,
URI
https://hdl.handle.net/11511/37109
DOI
https://doi.org/10.1109/iros.2018.8594447
Conference Name
International Conference on Intelligent Robots and Systems (IROS)
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
RG-trees: trajectory-free feedback motion planning using sparse random reference governor trees
Gölbol, Ferhat; Alatan, Abdullah Aydın; Ankaralı, Mustafa Mert; Department of Electrical and Electronics Engineering (2018)
Sampling based methods resulted in feasible and effective motion planning algorithms for high dimensional configuration spaces and complex environments. A vast majority of such algorithms as well as their application rely on generating a set of open-loop trajectories first, which are then tracked by feedback control policies. However, controlling a dynamic robot to follow the planned path, while respecting the spatial constraints originating from the obstacles is still a challenging problem. There are some ...
Attitude estimation and magnetometer calibration using reconfigurable TRIAD plus filtering approach
Söken, Halil Ersin (Elsevier BV, 2020-04-01)
This paper proposes using TRIAD and Unscented Kalman Filter (UKF) algorithms in a sequential architecture as a part of a small satellite attitude estimation algorithm. This TRIAD+UKF approach can both provide accurate attitude estimates for the satellite and calibrate the magnetometers in real-time. A complete calibration model for the magnetometers, considering bias, scale factor, soft iron and nonorthogonality errors, is assumed. In the algorithm's first stage, the TRIAD uses the available vector measurem...
Fine resolution frequency estimation from three DFT samples: Case of windowed data
Candan, Çağatay (2015-09-01)
An efficient and low complexity frequency estimation method based on the discrete Fourier transform (DFT) samples is described. The suggested method can operate with an arbitrary window function in the absence or presence of zero-padding. The frequency estimation performance of the suggested method is shown to follow the Cramer-Rao bound closely without any error floor due to estimator bias, even at exceptionally high signal-to-noise-ratio (SNR) values.
Two-dimensional unsteady Navier-Stokes solution method with moving overset grids
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1997-03-01)
A simple numerical algorithm to localize intergrid boundary points and to interpolate unsteady solution variables across two-dimensional, structured overset grids is presented. Overset grids are allowed to move in time relative to each other. Intergrid boundary points are localized in a triangular stencil on the donor grid by a directional search algorithm. The final parameters of the search algorithm give the interpolation weights at the intergrid boundary point. Numerical results are presented for steady ...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Gölbol, M. M. Ankaralı, and A. Saranlı, “RG-Trees: Trajectory-Free Feedback Motion Planning Using Sparse Random Reference Governor Trees,” presented at the International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37109.